Iterative proximal regularization of the modified Lagrangian functional for solving the quasi-variational Signorini inequality
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1571-1579 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The iterative Uzawa method with a modified Lagrangian functional is used to numerically solve the semicoercive Signorini problem with friction (quasi-variational inequality).
@article{ZVMMF_2008_48_9_a4,
     author = {E. M. Vikhtenko and R. V. Namm},
     title = {Iterative proximal regularization of the modified {Lagrangian} functional for solving the quasi-variational {Signorini} inequality},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1571--1579},
     year = {2008},
     volume = {48},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a4/}
}
TY  - JOUR
AU  - E. M. Vikhtenko
AU  - R. V. Namm
TI  - Iterative proximal regularization of the modified Lagrangian functional for solving the quasi-variational Signorini inequality
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1571
EP  - 1579
VL  - 48
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a4/
LA  - ru
ID  - ZVMMF_2008_48_9_a4
ER  - 
%0 Journal Article
%A E. M. Vikhtenko
%A R. V. Namm
%T Iterative proximal regularization of the modified Lagrangian functional for solving the quasi-variational Signorini inequality
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1571-1579
%V 48
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a4/
%G ru
%F ZVMMF_2008_48_9_a4
E. M. Vikhtenko; R. V. Namm. Iterative proximal regularization of the modified Lagrangian functional for solving the quasi-variational Signorini inequality. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1571-1579. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a4/

[1] Vikhtenko E. M., Namm R. V., “Skhema dvoistvennosti dlya resheniya polukoertsitivnoi zadachi Sinorini s treniem”, Zh. vychisl. matem. i matem. fiz., 47:12 (2007), 2023–2036 | MR

[2] By G., Kim S., Namm R. V., Sachkov S. A., “Metod iterativnoi proksimalnoi regulyarizatsii dlya poiska sedlovoi tochki v polukoertsitivnoi zadache Sinorini”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2024–2031 | MR

[3] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986 | MR

[4] Kikuchi N., Oden T., Contact problem in elasticity: a study of variational inequalities and finite element method, SIAM, Philadelphia, 1988 | MR | Zbl

[5] Fikera G., Teoremy suschestovaniya v teorii uprugosti, Mir, M., 1974

[6] Antipin A. S., “O metode vypuklogo programmirovaniya, ispolzuyuschem simmetricheskuyu modifikatsiyu funktsionala Lagranzha”, Ekonomika i matem. metody, 12:6 (1976), 1164–1173 | Zbl

[7] Antipin A. C., Metody nelineinogo programmirovaniya, osnovannye na pryamoi i dvoistvennoi modifikatsii funktsionala Lagranzha, Preprint, VNII sistemnykh issledovanii, M., 1979, 73 pp.

[8] Rockafellar R. T., “Augmented lagrangians and applications of the proximal point algorithm in convex programming”, Math. Operat. Res., 1:2 (1976), 97–116 | DOI | MR | Zbl

[9] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR

[10] Glowinski R., Numerical methods for nonlinear variational problems, Springer, New York, 1984 | MR | Zbl

[11] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR