@article{ZVMMF_2008_48_9_a4,
author = {E. M. Vikhtenko and R. V. Namm},
title = {Iterative proximal regularization of the modified {Lagrangian} functional for solving the quasi-variational {Signorini} inequality},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1571--1579},
year = {2008},
volume = {48},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a4/}
}
TY - JOUR AU - E. M. Vikhtenko AU - R. V. Namm TI - Iterative proximal regularization of the modified Lagrangian functional for solving the quasi-variational Signorini inequality JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 1571 EP - 1579 VL - 48 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a4/ LA - ru ID - ZVMMF_2008_48_9_a4 ER -
%0 Journal Article %A E. M. Vikhtenko %A R. V. Namm %T Iterative proximal regularization of the modified Lagrangian functional for solving the quasi-variational Signorini inequality %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 1571-1579 %V 48 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a4/ %G ru %F ZVMMF_2008_48_9_a4
E. M. Vikhtenko; R. V. Namm. Iterative proximal regularization of the modified Lagrangian functional for solving the quasi-variational Signorini inequality. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1571-1579. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a4/
[1] Vikhtenko E. M., Namm R. V., “Skhema dvoistvennosti dlya resheniya polukoertsitivnoi zadachi Sinorini s treniem”, Zh. vychisl. matem. i matem. fiz., 47:12 (2007), 2023–2036 | MR
[2] By G., Kim S., Namm R. V., Sachkov S. A., “Metod iterativnoi proksimalnoi regulyarizatsii dlya poiska sedlovoi tochki v polukoertsitivnoi zadache Sinorini”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2024–2031 | MR
[3] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986 | MR
[4] Kikuchi N., Oden T., Contact problem in elasticity: a study of variational inequalities and finite element method, SIAM, Philadelphia, 1988 | MR | Zbl
[5] Fikera G., Teoremy suschestovaniya v teorii uprugosti, Mir, M., 1974
[6] Antipin A. S., “O metode vypuklogo programmirovaniya, ispolzuyuschem simmetricheskuyu modifikatsiyu funktsionala Lagranzha”, Ekonomika i matem. metody, 12:6 (1976), 1164–1173 | Zbl
[7] Antipin A. C., Metody nelineinogo programmirovaniya, osnovannye na pryamoi i dvoistvennoi modifikatsii funktsionala Lagranzha, Preprint, VNII sistemnykh issledovanii, M., 1979, 73 pp.
[8] Rockafellar R. T., “Augmented lagrangians and applications of the proximal point algorithm in convex programming”, Math. Operat. Res., 1:2 (1976), 97–116 | DOI | MR | Zbl
[9] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR
[10] Glowinski R., Numerical methods for nonlinear variational problems, Springer, New York, 1984 | MR | Zbl
[11] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR