Effect of vertical vibrations on a two-layer system with a deformable interface
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1710-1720 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The effect of single- and two-frequency vibrations on the behavior of a system consisting of two homogeneous viscous fluids bounded by rigid walls is analyzed. It is assumed that the system as a whole is under vertical vibrations obeying a certain law. An eigenvalue problem is obtained in order to analyze the stability of the relative equilibrium. The case of finite frequencies and arbitrary modulation amplitudes is treated along with the case of high frequencies and small modulation amplitudes. In the former case, the parametric resonance domains are examined depending on the parameters of the system. In the latter case, the high-frequency vibration is shown to create effective surface tension, thus flattening the interface, and can suppress instability when the heavy fluid is over the light one.
@article{ZVMMF_2008_48_9_a14,
     author = {S. M. Zen'kovskaya and V. A. Novosyadlyǐ},
     title = {Effect of vertical vibrations on a~two-layer system with a~deformable interface},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1710--1720},
     year = {2008},
     volume = {48},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a14/}
}
TY  - JOUR
AU  - S. M. Zen'kovskaya
AU  - V. A. Novosyadlyǐ
TI  - Effect of vertical vibrations on a two-layer system with a deformable interface
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1710
EP  - 1720
VL  - 48
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a14/
LA  - ru
ID  - ZVMMF_2008_48_9_a14
ER  - 
%0 Journal Article
%A S. M. Zen'kovskaya
%A V. A. Novosyadlyǐ
%T Effect of vertical vibrations on a two-layer system with a deformable interface
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1710-1720
%V 48
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a14/
%G ru
%F ZVMMF_2008_48_9_a14
S. M. Zen'kovskaya; V. A. Novosyadlyǐ. Effect of vertical vibrations on a two-layer system with a deformable interface. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1710-1720. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a14/

[1] Kapitsa P. L., “Dinamicheskaya ustoichivost mayatnika pri koleblyuscheisya tochke podvesa”, Zh. eksperim. i teor. fiz., 21:5 (1951), 588–597

[2] Chelomei V. N., “O vozmozhnosti povysheniya ustoichivosti uprugikh sistem pri pomoschi vibratsii”, Dokl. AN SSSR, 110:3 (1956), 345–347

[3] Zenkovskaya S. M., Simonenko I. B., “O vliyanii vibratsii vysokoi chastoty na vozniknovenie konvektsii”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1966, no. 5, 51–55

[4] Simonenko I. B., “Obosnovanie metoda osredneniya dlya zadachi konvektsii v pole bystroostsilliruyuschikh sil i dlya drugikh parabolicheskikh uravnenii”, Matem. sb., 87(129):2 (1972), 236–253 | MR | Zbl

[5] Levenshtam V. B., “Obosnovanie metoda usredneniya dlya zadachi konvektsii pri vysokochastotnoi vibratsii”, Sibirskii matem. zhurnal, 34:2 (1993), 92–109 | MR | Zbl

[6] Yudovich V. I., “Vibrodinamika i vibrogeometriya mekhanicheskikh sistem so svyazyami”, Uspekhi mekhan., 4:3 (2006), 26–129

[7] Lyubimov D. V., Lyubimova T. P., Cherepanov A. A., Dinamika poverkhnostei razdela v vibratsionnykh polyakh, Fizmatlit, M., 2003

[8] Zenkovskaya S. M., Yudovich V. I., “Metod integrodifferentsialnykh uravnenii i tsepnykh drobei v zadache o parametricheskom vozbuzhdenii voln”, Zh. vychisl. matem. i matem. fiz., 44:4 (2004), 731–745 | MR

[9] Beyer J., Fridrich R., “Faraday instability: Linear analysis for viscous fluids”, Phys. Rev. E, 51:2 (1995), 1162–1168 | DOI

[10] Wolf G. H., “Dynamic stabilization of the Rayleig–Taylor instability and the corresponding dynamic equilibrium”, Z. Physik, 227 (1969), 291–300 | DOI

[11] Sekerzh-Zenkovich S. Ya., Kalinichenko B. A., “O vozbuzhdenii vnutrennikh voln v dvusloinoi zhidkosti vertikalnymi kolebaniyami”, Dokl. AN SSSR, 249:4 (1979), 797–799

[12] Sekerzh-Zenkovich S. Ya., “Parametricheskoe vozbuzhdenie voln konechnoi amplitudy na granitse razdela dvukh zhidkostei raznykh plotnostei”, Dokl. AN SSSR, 272:5 (1983), 1083–1086 | MR

[13] Cherepanov A. A., Vliyanie peremennykh vneshnikh polei na neustoichivost Releya–Teilora, Preprint. Nekotorye zadachi ustoichivosti poverkhnostei zhidkosti, Uralskii nauchn. tsentr AN SSSR, Sverdlovsk, 1984, 29–53 pp.

[14] Kumar K., Tuckerman L. S., “Parametric instability of the interface between two fluids”, J. Fluid Mech., 279 (1994), 49–68 | DOI | MR | Zbl

[15] Zenkovskaya S. M., Novosyadlyi V. A., “Parametricheskoe vozbuzhdenie voln na granitse razdela dvukhsloinoi sistemy”, Izv. vuzov. Severo-Kavkazskii region. Estestv. nauki. Nelineinye probl. mekhan. sploshnykh sred, 2004, 117–123

[16] Birikh R. V., Bushueva S. V., “Termokapillyarnaya neustoichivost v dvukhsloinoi sisteme s deformiruemoi granitsei razdela”, Izv. RAN. Mekhan. zhidkosti i gaza, 2001, no. 3, 13–20 | Zbl

[17] Birikh R. V., Briskman V. A., Bushueva S. V., Rudakov R. N., “Termokapillyarnaya i vibratsionnaya neustoichivost v dvukhsloinoi sisteme s deformiruemoi granitsei razdela”, Termo- i kontsentratsionno-kapillyarnye effekty v slozhnykh sistemakh, UrO RAN, Ekaterinburg, 2003, 21–33

[18] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, (v 10 t.), v. 6, Gidrodinamika, Izd. 4-e, stereotipnoe, Fizmatgiz, M., 1988

[19] Yudovich V. I., Zenkovskaya S. M., Novosiadliy V. A., Shleykel A. L., “Parametric excitation of waves on a free boundary of a horizontal fluid layer”, C. r. Mechanique, 332 (2004), 257–262 | DOI

[20] Zhou B., Liu Q., Tang Z., “Raleigh–Marangoni–Benard instability in two-layer fluid system”, Acta Mech. Sinica, 20:4 (2004), 366–373 | DOI