Soliton solutions to generalized discrete Korteweg–de Vries equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1698-1709 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New discrete equations of the simplest three-point form are considered that generalize the discrete Korteweg–de Vries equation. The properties of solitons, kinks, and oscillatory waves are numerically examined for three types of interactions between neighboring chain elements. An analogy with solutions to limiting continual equations is drawn.
@article{ZVMMF_2008_48_9_a13,
     author = {S. P. Popov},
     title = {Soliton solutions to generalized discrete {Korteweg{\textendash}de} {Vries} equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1698--1709},
     year = {2008},
     volume = {48},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a13/}
}
TY  - JOUR
AU  - S. P. Popov
TI  - Soliton solutions to generalized discrete Korteweg–de Vries equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1698
EP  - 1709
VL  - 48
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a13/
LA  - ru
ID  - ZVMMF_2008_48_9_a13
ER  - 
%0 Journal Article
%A S. P. Popov
%T Soliton solutions to generalized discrete Korteweg–de Vries equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1698-1709
%V 48
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a13/
%G ru
%F ZVMMF_2008_48_9_a13
S. P. Popov. Soliton solutions to generalized discrete Korteweg–de Vries equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1698-1709. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a13/

[1] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris X., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR

[2] Bogoyavlenskii O. I., Oprokidyvayuschiesya solitony, Nauka, M., 1991 | MR | Zbl

[3] Bibik Yu. V., Popov S. P., “Chislennoe modelirovanie solitonnykh reshenii prosteishikh diskretnykh uravnenii i ikh kontinualnykh analogov”, Matem. modelirovanie, 16:5 (2004), 66–82 | MR

[4] Bibik Yu. V., Popov S. P., Sarancha D. A., “Chislennoe reshenie kineticheskogo uravneniya Bogoyavlenskogo i sistemy Lotki–Volterra s diffuziei”, Zh. vychisl. matem. i matem. fiz., 44:5 (2004), 904–916 | MR | Zbl

[5] Slyunyaev A. B., Pelinovskii E. H., “Dinamika solitonov bolshoi amplitudy”, Zh. eksperim. i teor. fiz., 116:1(7) (1999), 318–335