Soliton solutions to generalized discrete Korteweg–de Vries equations
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1698-1709
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              New discrete equations of the simplest three-point form are considered that generalize the discrete Korteweg–de Vries equation. The properties of solitons, kinks, and oscillatory waves are numerically examined for three types of interactions between neighboring chain elements. An analogy with solutions to limiting continual equations is drawn.
            
            
            
          
        
      @article{ZVMMF_2008_48_9_a13,
     author = {S. P. Popov},
     title = {Soliton solutions to generalized discrete {Korteweg{\textendash}de} {Vries} equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1698--1709},
     publisher = {mathdoc},
     volume = {48},
     number = {9},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a13/}
}
                      
                      
                    TY - JOUR AU - S. P. Popov TI - Soliton solutions to generalized discrete Korteweg–de Vries equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 1698 EP - 1709 VL - 48 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a13/ LA - ru ID - ZVMMF_2008_48_9_a13 ER -
S. P. Popov. Soliton solutions to generalized discrete Korteweg–de Vries equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1698-1709. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a13/
