Soliton solutions to generalized discrete Korteweg–de Vries equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1698-1709

Voir la notice de l'article provenant de la source Math-Net.Ru

New discrete equations of the simplest three-point form are considered that generalize the discrete Korteweg–de Vries equation. The properties of solitons, kinks, and oscillatory waves are numerically examined for three types of interactions between neighboring chain elements. An analogy with solutions to limiting continual equations is drawn.
@article{ZVMMF_2008_48_9_a13,
     author = {S. P. Popov},
     title = {Soliton solutions to generalized discrete {Korteweg{\textendash}de} {Vries} equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1698--1709},
     publisher = {mathdoc},
     volume = {48},
     number = {9},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a13/}
}
TY  - JOUR
AU  - S. P. Popov
TI  - Soliton solutions to generalized discrete Korteweg–de Vries equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1698
EP  - 1709
VL  - 48
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a13/
LA  - ru
ID  - ZVMMF_2008_48_9_a13
ER  - 
%0 Journal Article
%A S. P. Popov
%T Soliton solutions to generalized discrete Korteweg–de Vries equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1698-1709
%V 48
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a13/
%G ru
%F ZVMMF_2008_48_9_a13
S. P. Popov. Soliton solutions to generalized discrete Korteweg–de Vries equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1698-1709. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a13/