Refined-mesh interpolation method for functions with a boundary-layer component
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1673-1684 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Linear and quadratic spline interpolation methods for a one-variable function with a boundary-layer component are examined. It is shown that the interpolation method for such a function leads to considerable errors when applied on a uniform mesh. The error of linear and quadratic spline interpolations on meshes that are refined in the boundary layer is estimated. Numerical results are presented.
@article{ZVMMF_2008_48_9_a11,
     author = {A. I. Zadorin},
     title = {Refined-mesh interpolation method for functions with a~boundary-layer component},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1673--1684},
     year = {2008},
     volume = {48},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a11/}
}
TY  - JOUR
AU  - A. I. Zadorin
TI  - Refined-mesh interpolation method for functions with a boundary-layer component
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1673
EP  - 1684
VL  - 48
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a11/
LA  - ru
ID  - ZVMMF_2008_48_9_a11
ER  - 
%0 Journal Article
%A A. I. Zadorin
%T Refined-mesh interpolation method for functions with a boundary-layer component
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1673-1684
%V 48
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a11/
%G ru
%F ZVMMF_2008_48_9_a11
A. I. Zadorin. Refined-mesh interpolation method for functions with a boundary-layer component. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 9, pp. 1673-1684. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_9_a11/

[1] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–890

[2] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[3] Miller J. J. H.. O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, 1996 | MR

[4] Vulanovic R., “A priori meshes for singularly perturbed quasilinear two-point boundary value problems”, IMA J. Numer. Analys., 21:1 (2001), 349–366 | DOI | MR | Zbl

[5] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[6] De Bor K., Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985 | MR | Zbl

[7] Zadorin A. I., “Metod interpolyatsii dlya zadachi s pogranichnym sloem”, Sibirskii zhurnal vychisl. matem., 10:3 (2007), 267–275

[8] Kellogg R. B., Tsan A., “Analysis of some difference approximations for a singular perturbation problems without turning points”, Math. Comput., 32:144 (1978), 1025–1039 | DOI | MR | Zbl

[9] Bakhvalov N. C., Zhidkov H. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl