Epidemic dynamics in a heterogeneous incompletely isolated population with allowance for seasonal variations in the infection rate
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 8, pp. 1488-1499
Cet article a éte moissonné depuis la source Math-Net.Ru
Mathematical parasite-host models are generalized to the case when the population members differ in susceptibility and contagiousness, there is an external source of infection, and the model parameters depend periodically (seasonally) on time. The model is proved to have a periodic solution that is unique and exponentially stable for sufficiently small periodic oscillations of the coefficients.
@article{ZVMMF_2008_48_8_a9,
author = {A. N. Gerasimov and V. N. Razzhevaikin},
title = {Epidemic dynamics in a heterogeneous incompletely isolated population with allowance for seasonal variations in the infection rate},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1488--1499},
year = {2008},
volume = {48},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a9/}
}
TY - JOUR AU - A. N. Gerasimov AU - V. N. Razzhevaikin TI - Epidemic dynamics in a heterogeneous incompletely isolated population with allowance for seasonal variations in the infection rate JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 1488 EP - 1499 VL - 48 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a9/ LA - ru ID - ZVMMF_2008_48_8_a9 ER -
%0 Journal Article %A A. N. Gerasimov %A V. N. Razzhevaikin %T Epidemic dynamics in a heterogeneous incompletely isolated population with allowance for seasonal variations in the infection rate %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 1488-1499 %V 48 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a9/ %G ru %F ZVMMF_2008_48_8_a9
A. N. Gerasimov; V. N. Razzhevaikin. Epidemic dynamics in a heterogeneous incompletely isolated population with allowance for seasonal variations in the infection rate. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 8, pp. 1488-1499. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a9/
[1] Anderson R. M., May R. M., Infectious disease of humans and control, Oxford Univ. Press, Oxford, 1991 | Zbl
[2] Pokrovskii V. I., Infektsionnye bolezni i epidemiologiya, Geotar Meditsina, M., 2002
[3] Demidova O. A., Razzhevaikin V. N., “Modelirovanie epidemicheskogo protsessa v populyatsii, strukturirovannoi po faktoram riska”, Matem. modelirovanie, 9:9 (1997), 27–42 | MR | Zbl
[4] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995 | Zbl
[5] Rikhtmaier R., Printsipy sovremennoi matematicheskoi fiziki, v. 1, Mir, M., 1982 | MR
[6] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl