Automatic parallel generation of tetrahedral grids by using a domain decomposition approach
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 8, pp. 1448-1457 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algorithm for the automatic parallel generation of three-dimensional unstructured grids based on geometric domain decomposition is proposed. A software package based on this algorithm is described. Examples of generating meshes for some application problems on a multiprocessor computer are presented. It is shown that the parallel algorithm can significantly (by a factor of several tens) reduce the mesh generation time. Moreover, it can easily generate meshes with as many as $5\times10^7$ elements, which can hardly be generated sequentially. Issues concerning the speedup and the improvement of the efficiency of the computations and of the quality of the resulting meshes are discussed.
@article{ZVMMF_2008_48_8_a7,
     author = {H. Andr\"a and O. N. Glushchenko and E. G. Ivanov and A. N. Kudryavtsev},
     title = {Automatic parallel generation of tetrahedral grids by using a domain decomposition approach},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1448--1457},
     year = {2008},
     volume = {48},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a7/}
}
TY  - JOUR
AU  - H. Andrä
AU  - O. N. Glushchenko
AU  - E. G. Ivanov
AU  - A. N. Kudryavtsev
TI  - Automatic parallel generation of tetrahedral grids by using a domain decomposition approach
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1448
EP  - 1457
VL  - 48
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a7/
LA  - ru
ID  - ZVMMF_2008_48_8_a7
ER  - 
%0 Journal Article
%A H. Andrä
%A O. N. Glushchenko
%A E. G. Ivanov
%A A. N. Kudryavtsev
%T Automatic parallel generation of tetrahedral grids by using a domain decomposition approach
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1448-1457
%V 48
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a7/
%G ru
%F ZVMMF_2008_48_8_a7
H. Andrä; O. N. Glushchenko; E. G. Ivanov; A. N. Kudryavtsev. Automatic parallel generation of tetrahedral grids by using a domain decomposition approach. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 8, pp. 1448-1457. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a7/

[1] Mavriplis D. J., “Unstructured grid techniques”, Ann. Rev. Fluid Mech., 29 (1997), 473–514 | DOI | MR

[2] Kruglyakova D. V., Neledova A. B., Tishkin V. F., Filatov A. Yu., “Nestrukturirovannye adaptivnye setki dlya zadach matematicheskoi fiziki (obzor)”, Matem. modelirovanie, 10:3 (1998), 93–116 | MR

[3] B. H. V. Topping, L. Lammer (eds.), High performance computing for computational mechanics, Saxe-Coburg Publ., 2000

[4] Agarwal R. K., “Computational fluid dynamics of whole-body aircraft”, Ann. Rev. Fluid Mech., 31 (1999), 125–169 | DOI

[5] Löhner R., “Three-dimensional fluid-structure interaction using a finite element solver and adaptive remeshing”, Comput. System. Engng., 1:2–4 (1990), 257–272 | DOI

[6] Mestrewu E., Löhner R., Aita S., TGV tunnel-entry simulations using a finite element gode with automatic Remeshing, AIAA-96-0798, 1996

[7] Mestreau E., Löhner R., Airbag simulations using fluig/structure coupling, AIAA-96-0798, 1996

[8] Hassan O., Bayne L. B., Morgan K., Weatherill N. P., “An Adaptive unstructured mesh method for transient flows involving moving boundaries”, 5th US Congress on Comput. Mech., 1999, 662–674

[9] Baun J. D., Luo H., Löhner R., The numerical simulation of strongly unsteady flows with hundreds of moving bodies, AIAA-98-0788, 1998

[10] Baun J. D., Luo H., Mestreau E. et al., A coupled CFD/CSD methodology for modeling weapon detonation and fragmentation, AIAA-99-0794, 1999

[11] Chrisochoides N. A., Survey of parallel mesh generation methods, Brown Univ., Providence RI, 2005, 37 pp. | MR

[12] Chetverushkin B. N., Gasilov V. A., Polyakov S. V. et al., “Data structures and mesh processing in parallel CFD project GIMM”, Parallel Computing Current Future Issues of High-End Comuting, Proc. Internat. Conf. ParCo 2005, J. von Neumann Inst. Comput. NIC Series, 33, Julich, 2006, 351–358

[13] Kopysov S. P., Novikov S. K., Ponomarev A. B., “Metody parallelnogo postroeniya nestrukturirovannykh setok”, Chisl. geometriya, postroenie raschetnykh setok i vysokoproizvoditelnye vychisleniya, VTs RAN, M., 2006, 125–130

[14] Ivanov E. G., “Automatic parallel generation of three-dimensional unstructured grids for computational mechanics”, Vychisl. tekhnologii, 11:1 (2006), 3–17

[15] Ivanov E. G., Andrä H., Kudryavtsev A. N., “Domain decomposition approach for automatic parallel generation of tetrahedral grids”, Comput. Meth. Appl. Math., 6:2 (2006), 178–193 | MR | Zbl

[16] METIS: Multilevel partitioning algorithms http://www-users.cs.umn.edu/~karypis/metis/

[17] Galtier J., George P. L., “Prepartitioning as a way to mesh subdomains in parallel”, 5th Internat. Mesh. Roundtable, Sandia Nat. Lab., 1996, 107–122

[18] Shewchuk J. R., “Triangle: Engineering a 2d quality mesh generator and Delaunay triangulator”, Proc. First Workshop on Appl. Comput. Geometry, 1996, 124–133

[19] Si H., Gaertner K., “Meshing piecewise linear complexes by constrained delaunay tetrahedralizations”, Proc. 14th Internat. Mesh. Roundtable, 2005

[20] Lima Group Web Site http://www.lima.it/english/prostheses/products/multigen.htm

[21] http://www.gienath.com/english/produkte.htm