@article{ZVMMF_2008_48_8_a6,
author = {Yu. V. Vassilevski and I. V. Kapyrin},
title = {Two splitting schemes for the nonstationary convection-diffusion problem on tetrahedral meshes},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1429--1447},
year = {2008},
volume = {48},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a6/}
}
TY - JOUR AU - Yu. V. Vassilevski AU - I. V. Kapyrin TI - Two splitting schemes for the nonstationary convection-diffusion problem on tetrahedral meshes JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 1429 EP - 1447 VL - 48 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a6/ LA - ru ID - ZVMMF_2008_48_8_a6 ER -
%0 Journal Article %A Yu. V. Vassilevski %A I. V. Kapyrin %T Two splitting schemes for the nonstationary convection-diffusion problem on tetrahedral meshes %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 1429-1447 %V 48 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a6/ %G ru %F ZVMMF_2008_48_8_a6
Yu. V. Vassilevski; I. V. Kapyrin. Two splitting schemes for the nonstationary convection-diffusion problem on tetrahedral meshes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 8, pp. 1429-1447. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a6/
[1] Bourgeat A., Kern M., Schumacher S., Talandier J., “The COUPLEX test cases: Nuclear waste disposal simulation”, Comput. Geosci., 8:2 (2004), 83–98 | DOI | Zbl
[2] Samarskii A. A., Vabischevich P. H., Chislennye metody resheniya zadach konvektsii-diffuzii, Editorial URSS, M., 1999
[3] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[4] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer, New York, 1991 | MR | Zbl
[5] Bernard-Michel G., Le Potier C., Beccantini A. et al., “The andra couplex 1 test case: comparisons between finite element, mixed hybrid finite element and finite volume discretizations”, Comput. Geosci., 8:2 (2004), 187–201 | DOI | Zbl
[6] Cockburn B., Hou S., Shu C. et al., Discontinuous Galerkin methods. Theory, computation and applications, Lect. Notes Comput. Sci. and Engng., 11, 2000 | MR
[7] Bastian P., Lang S., “Couplex benchmark computations obtained with the software toolbox UG”, Comput. Geosci., 8:2 (2004), 125–147 | DOI | Zbl
[8] Mishev I. D., “Finite volume methods on Voronoi meshes”, Numer. Meth. Partial Different. Equat., 12:2 (1998), 193–212 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[9] Aavatsmark I., Barkve T., Boe O., Mannseth T., “Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods”, SIAM. J. Sci. Comput., 19:5 (1998), 1700–1716 | DOI | MR | Zbl
[10] Le Potier C., “Schema volumes finis monotone pour des operateurs de diffusion fortement anisotropes sur des maillages de triangle non structures”, C. r. Acad. sci. Paris. Ser. I, 341 (2005), 787–792 | MR | Zbl
[11] Lipnikov K., Shashkov M., Svyatski D., Vassilevski Yu., “Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes”, J. Comput. Phys., 227:1 (2007), 492–512 | DOI | MR | Zbl
[12] Kapyrin I. V., “Semeistvo monotonnykh metodov chislennogo resheniya trekhmernykh zadach diffuzii na nestrukturirovannykh tetraedralnykh setkakh”, Dokl. RAN, 416:5 (2007), 588–593 | MR | Zbl
[13] Hughes T. J. R., Brooks A. N., “A multidimensional upwind scheme with no crosswind diffusion”, Finite Element Methods for Convection Dominated Flows, 34, ASME, New York, 1979, 19–35 | MR | Zbl
[14] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl
[15] Lax P. D., Shock waves and entropy. Contributions to nonlinear functional analisys, Acad. Press, New York, 1971 | MR | Zbl
[16] Siegel P., Mose R., Ackerer Ph., Jaffre J., “Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements”, Internat. J. Numer. Meth. Fluids, 24 (1997), 595–613 | 3.0.CO;2-I class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[17] Dawson C., “High resolution upwind-mixed finite element methods for advection-diffusion equations with variable time-stepping”, Numer. Meth. Part. Different. Equat., 11:5 (1995), 525–538 | DOI | MR | Zbl
[18] Kuimin D., Turek S., “Flux correction tools for finite elements”, J. Comput. Phys., 175:2 (2002), 525–558 | DOI | MR
[19] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988 | MR
[20] Ackerer Ph., Younes A., Mose R., “Modeling variable density flow and solute transport in porous medium: I. Numerical model and verification”, Transport in Porous Media, 35 (1999), 345–373 | DOI
[21] Achdou Y., Jaffre J., Svyatski D., Vassilevski Yu., “Numerical simulation of unsteady 3D flows on anisotropic grids”, French-Russian A. M. Lyapunov Inst. Appl. Meth. and Comput. Sci. Transactions, 4 (2003), 107–124
[22] Lionc Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR
[23] Kaporin I., “High quality preconditioning of a general symmetric positive definite matrix based on its $U^\mathrm TU+U^\mathrm TR+R^\mathrm TU$-decomposition”, Numer. Linear Algebra Appl., 5 (1998), 483–509 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[24] Churent G., Jaffre J., Mathematial models and finite elements for reservoir simulation, North Holland, Amsterdam, 1986
[25] Hoteit H.,Ackerer Ph., Mose R. et al., “New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes”, Internat. J. Numer. Meth. Engng., 61 (2004), 2566–2593 | DOI | MR | Zbl
[26] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl
[27] Feike J. L., Dane J. H., “Analitical solutions of the one-dimensional advection equation and two- or three-dimensional dispersion equation”, Water Resources Res., 26:7 (1990), 1475–1482