Two splitting schemes for the nonstationary convection-diffusion problem on tetrahedral meshes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 8, pp. 1429-1447 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two splitting schemes are proposed for the numerical solution of three-dimensional nonstationary convection-diffusion problems on unstructured meshes in the case of a full diffusion tensor. An advantage of the first scheme is that splitting is generated by the properties of the approximation spaces and does not reduce the order of accuracy. An advantage of the second scheme is that the resulting numerical solutions are nonnegative. A numerical study is conducted to compare the splitting schemes with classical methods, such as finite elements and mixed finite elements. The numerical results show that the splitting schemes are characterized by low dissipation, high-order accuracy, and versatility.
@article{ZVMMF_2008_48_8_a6,
     author = {Yu. V. Vassilevski and I. V. Kapyrin},
     title = {Two splitting schemes for the nonstationary convection-diffusion problem on tetrahedral meshes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1429--1447},
     year = {2008},
     volume = {48},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a6/}
}
TY  - JOUR
AU  - Yu. V. Vassilevski
AU  - I. V. Kapyrin
TI  - Two splitting schemes for the nonstationary convection-diffusion problem on tetrahedral meshes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1429
EP  - 1447
VL  - 48
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a6/
LA  - ru
ID  - ZVMMF_2008_48_8_a6
ER  - 
%0 Journal Article
%A Yu. V. Vassilevski
%A I. V. Kapyrin
%T Two splitting schemes for the nonstationary convection-diffusion problem on tetrahedral meshes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1429-1447
%V 48
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a6/
%G ru
%F ZVMMF_2008_48_8_a6
Yu. V. Vassilevski; I. V. Kapyrin. Two splitting schemes for the nonstationary convection-diffusion problem on tetrahedral meshes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 8, pp. 1429-1447. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a6/

[1] Bourgeat A., Kern M., Schumacher S., Talandier J., “The COUPLEX test cases: Nuclear waste disposal simulation”, Comput. Geosci., 8:2 (2004), 83–98 | DOI | Zbl

[2] Samarskii A. A., Vabischevich P. H., Chislennye metody resheniya zadach konvektsii-diffuzii, Editorial URSS, M., 1999

[3] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[4] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer, New York, 1991 | MR | Zbl

[5] Bernard-Michel G., Le Potier C., Beccantini A. et al., “The andra couplex 1 test case: comparisons between finite element, mixed hybrid finite element and finite volume discretizations”, Comput. Geosci., 8:2 (2004), 187–201 | DOI | Zbl

[6] Cockburn B., Hou S., Shu C. et al., Discontinuous Galerkin methods. Theory, computation and applications, Lect. Notes Comput. Sci. and Engng., 11, 2000 | MR

[7] Bastian P., Lang S., “Couplex benchmark computations obtained with the software toolbox UG”, Comput. Geosci., 8:2 (2004), 125–147 | DOI | Zbl

[8] Mishev I. D., “Finite volume methods on Voronoi meshes”, Numer. Meth. Partial Different. Equat., 12:2 (1998), 193–212 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[9] Aavatsmark I., Barkve T., Boe O., Mannseth T., “Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods”, SIAM. J. Sci. Comput., 19:5 (1998), 1700–1716 | DOI | MR | Zbl

[10] Le Potier C., “Schema volumes finis monotone pour des operateurs de diffusion fortement anisotropes sur des maillages de triangle non structures”, C. r. Acad. sci. Paris. Ser. I, 341 (2005), 787–792 | MR | Zbl

[11] Lipnikov K., Shashkov M., Svyatski D., Vassilevski Yu., “Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes”, J. Comput. Phys., 227:1 (2007), 492–512 | DOI | MR | Zbl

[12] Kapyrin I. V., “Semeistvo monotonnykh metodov chislennogo resheniya trekhmernykh zadach diffuzii na nestrukturirovannykh tetraedralnykh setkakh”, Dokl. RAN, 416:5 (2007), 588–593 | MR | Zbl

[13] Hughes T. J. R., Brooks A. N., “A multidimensional upwind scheme with no crosswind diffusion”, Finite Element Methods for Convection Dominated Flows, 34, ASME, New York, 1979, 19–35 | MR | Zbl

[14] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[15] Lax P. D., Shock waves and entropy. Contributions to nonlinear functional analisys, Acad. Press, New York, 1971 | MR | Zbl

[16] Siegel P., Mose R., Ackerer Ph., Jaffre J., “Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements”, Internat. J. Numer. Meth. Fluids, 24 (1997), 595–613 | 3.0.CO;2-I class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[17] Dawson C., “High resolution upwind-mixed finite element methods for advection-diffusion equations with variable time-stepping”, Numer. Meth. Part. Different. Equat., 11:5 (1995), 525–538 | DOI | MR | Zbl

[18] Kuimin D., Turek S., “Flux correction tools for finite elements”, J. Comput. Phys., 175:2 (2002), 525–558 | DOI | MR

[19] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988 | MR

[20] Ackerer Ph., Younes A., Mose R., “Modeling variable density flow and solute transport in porous medium: I. Numerical model and verification”, Transport in Porous Media, 35 (1999), 345–373 | DOI

[21] Achdou Y., Jaffre J., Svyatski D., Vassilevski Yu., “Numerical simulation of unsteady 3D flows on anisotropic grids”, French-Russian A. M. Lyapunov Inst. Appl. Meth. and Comput. Sci. Transactions, 4 (2003), 107–124

[22] Lionc Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR

[23] Kaporin I., “High quality preconditioning of a general symmetric positive definite matrix based on its $U^\mathrm TU+U^\mathrm TR+R^\mathrm TU$-decomposition”, Numer. Linear Algebra Appl., 5 (1998), 483–509 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[24] Churent G., Jaffre J., Mathematial models and finite elements for reservoir simulation, North Holland, Amsterdam, 1986

[25] Hoteit H.,Ackerer Ph., Mose R. et al., “New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes”, Internat. J. Numer. Meth. Engng., 61 (2004), 2566–2593 | DOI | MR | Zbl

[26] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[27] Feike J. L., Dane J. H., “Analitical solutions of the one-dimensional advection equation and two- or three-dimensional dispersion equation”, Water Resources Res., 26:7 (1990), 1475–1482