Classification of hexahedral cells
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 8, pp. 1406-1428 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For three-dimensional structured grids, a classification of hexahedral cells and a criterion for their division into classes are proposed.
@article{ZVMMF_2008_48_8_a5,
     author = {O. V. Ushakova},
     title = {Classification of hexahedral cells},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1406--1428},
     year = {2008},
     volume = {48},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a5/}
}
TY  - JOUR
AU  - O. V. Ushakova
TI  - Classification of hexahedral cells
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1406
EP  - 1428
VL  - 48
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a5/
LA  - ru
ID  - ZVMMF_2008_48_8_a5
ER  - 
%0 Journal Article
%A O. V. Ushakova
%T Classification of hexahedral cells
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1406-1428
%V 48
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a5/
%G ru
%F ZVMMF_2008_48_8_a5
O. V. Ushakova. Classification of hexahedral cells. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 8, pp. 1406-1428. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a5/

[1] Bronina T. N., Gasilova I. A., Ushakova O. V., “Algoritmy postroeniya trekhmernykh strukturirovannykh setok”, Zh. vychisl. matem. i matem. fiz., 43:6 (2003), 875–883 | MR | Zbl

[2] Ushakova O. V., “Usloviya nevyrozhdennosti trekhmernykh yacheek. Formula dlya ob'ema yacheek”, Zh. vychisl. matem. i matem. fiz., 41:6 (2001), 881–894 | MR | Zbl

[3] Ushakova O. V., “Conditions of nondegeneracy of three-dimensional cells: A formula of a volume of cells”, Numer. Grid Generation in Compout. Field Simulations, Internat. Soc. Grib. Generation (ISGG), Mississippi State, MS, 2000, 659–668 | MR

[4] Ushakova O. V., “Conditions of nondegeneracy of three-dimensional cells. A formula of a volume of cells”, SIAM J. Sci. Comput., 23:4 (2001), 1273–1289 | DOI | MR

[5] Ushakova O. V., “Nondegeneracy criteria for 3-D frid cells. Formulas for a cell volume”, Grid Generation: New Trends and Applic. in Real-world Simulations, Proc. Minisymposium in the Intern. Conf. “Optimizat. of finiteelement approximations, splines and wavelets”, St. Petersburg, 2001, 115–128

[6] Ushakova O. V., “On nondegeneracy of three-dimensional grids”, Proc. Steklov Instit. Math., Suppl. 1, M., 2004, S78–S100 | MR | Zbl

[7] Khairullina O. B., Sidorov A. F., Ushakova O. V., “Variational methods of construction of optimal grids”, Handbook of Grid Generation, CRC Press, Boca Raton, FL, 1999, 36-1–36-25

[8] Godunov S. K., Zabrodin A. B., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[9] Knupp P. M., Steinberg S., Fundamentals of grid generation, CRC Press, Boca Raton, FL, 1994 | MR | Zbl

[10] Fikhtengolts G. M., Osnovy matematicheskogo analiza, v. 2, Nauka, M., 1968

[11] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1984 | MR

[12] Liseikin V. D., A computational differential geometry approach to grid generation, Springer, Berlin, 2003 | MR | Zbl

[13] Chua L. O., Lam Y. F., “Global homeomorphizm of vector-valued functions”, J. Math. Analis. and Appl., 39:3 (1972), 600–624 | DOI | MR

[14] Ivanenko S. A., “Harmonic mappings”, Handbook of Grid Generation, CRC Press, Boca Raton, FL, 1999, 8-1–8-43 | MR

[15] Ivanenko C. A., Adaptivno-garmonicheskie setki, VTs RAN, M., 1997

[16] Bobylev H. A., Ivanenko S. A., Ismailov I. G., “Neskolko zamechanii o gomeomorfnykh otobrazheniyakh”, Matem. zametki, 60:4 (1996), 593–596 | MR | Zbl

[17] Bobylev H. A., Ivanenko S. A., Kazunin A. B., “O kusochno-gladkikh gomeomorfnykh otobrazheniyakh ogranichennykh oblastei i ikh prilozheniyakh k teorii setok”, Zh. vychisl. matem. i matem. fiz., 43:6 (2003), 808–817 | MR | Zbl

[18] Bobylev N. A., Ivanenko S. A., Kazunin A. V., “On the piece wise homeomorphic mappings of the bounded domains and their applications to the theory of grids”, Grid Generation: Theory and Applic, Proc. Workshop Organized by the Computing Center RAS and R Company Tesis Russia, Computing Center RAS, 2002, 26–42 http://www.ccas.ru/gridgen/ggta02/papers/Bobylev.pdf

[19] Prokopov G. P., “Ob organizatsii sravneniya algoritmov i programm postroeniya regulyarnykh dvumernykh raznostnykh setok”, Vopr. at. nauki i tekhn. Matem. modelirovanie fiz. protsessov, 1989, no. 3, 98–108

[20] Prokopov G. P., Variatsionnye metody rascheta dvumernykh setok pri reshenii nestatsionarnykh zadach, Preprint No 4, IPMatem. RAN, M., 2003, 32 pp.

[21] Bronina T. N., Ushakova O. V., “Generation of optimal grids for the volumes of revolution”, Proc. 9th Internat. Conf. on Numer. Grid Generation (San Jose, California, 12–15 June 2005), Internat. Soc. Grid Generation, Birmingham, Alabama, 2005, 270–279, [CD-ROM]

[22] Bronina T. N., Ushakova O. B., “Raschety trekhmernykh strukturirovannykh setok v konfiguratsiyakh s osobennostyami”, Tr. Vseros. konf., VTs RAN, M., 2006, 190–199

[23] Artyomova N. A., Khairullin A. F., Khairullina O. B., “Generation of curvilinear grids in multiply connected domains of complex topology”, Advances in Grid Generation, Novascience Publ., 2007, 161–188 | MR

[24] Azarenok B. N., “First-order algorithm of conservative interpolation on hexahedral meshes”, Proc. 9th Internat. Conf. on Numer. Grid Generation (San Jose, California, 12–15 June 2005), Internat. Soc. Grib. Generation, Birmingham, Alabama, 2005, 3–12, [CD-ROM]

[25] Azarenok B. H., Algoritm konservativnoi interpolyatsii na geksaedralnykh setkakh, Preprint, VTs RAN, M., 2006, 58 pp. | MR

[26] Ushakova O. V., “Klassifikatsiya shestigrannykh yacheek”, Chisl. geometriya, postroenie raschetnykh setok i vysokoproizvoditelnye vychisleniya, Tr. Vseros. konf., VTs RAN, M., 2006, 180–189

[27] Azarenok B. N., “Conservative remapping on hexahedral meshes”, Advances in Grid Generation, Novascince Publ., New York, 2007, 337–380 | MR

[28] Azarenok B. H., Ob odnom variatsionnom metode postroeniya prostranstvennykh setok, Preprint, VTs RAN, M., 2006, 51 pp. | MR

[29] Azarenok B. N., “A variational hexahedral crid generator with control metric”, J. Comput. Phys., 218:2 (2006), 720–747 | DOI | MR | Zbl

[30] Dukowicz J. K., Padial N. T., REMAP3D: A conservative three-dimensional remapping code, rept., Los Alamos, 1991

[31] Shangyou Z., Subtetrabedral test for the positive Jacobian of hexaherdral elements http://www.math.udel.edu/szhang/research/p/subtettest.pdf

[32] Vavasis S. A., A Bernstein–Bezier sufficient condition for invertibility of polynomial mapping functions, 2001, November 3 http://www.cs.cornell.edu/home/vavasis | Zbl

[33] Grandy J., “Conservative remapping and regions overlays by intersecting arbitrary polyhedra”, J. Comput. Phys., 148 (1999), 433–466 | DOI | MR | Zbl