Automatic step size and order control in explicit one-step extrapolation methods
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 8, pp. 1392-1405 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general theory is presented for explicit one-step extrapolation methods for ordinary differential equations. The emphasis is placed on the efficient use of extrapolation processes of this type in practice. The choice of the optimal step size and the order at each grid point is made in the automatic mode with the minimum computational work per step being the guiding principle. This principle makes it possible to find a numerical solution in the minimal time. The efficiency of the automatic step size and order control is demonstrated using test problems for which the well-known GBS method was used.
@article{ZVMMF_2008_48_8_a4,
     author = {G. Yu. Kulikov and E. Yu. Khrustaleva},
     title = {Automatic step size and order control in explicit one-step extrapolation methods},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1392--1405},
     year = {2008},
     volume = {48},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a4/}
}
TY  - JOUR
AU  - G. Yu. Kulikov
AU  - E. Yu. Khrustaleva
TI  - Automatic step size and order control in explicit one-step extrapolation methods
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1392
EP  - 1405
VL  - 48
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a4/
LA  - ru
ID  - ZVMMF_2008_48_8_a4
ER  - 
%0 Journal Article
%A G. Yu. Kulikov
%A E. Yu. Khrustaleva
%T Automatic step size and order control in explicit one-step extrapolation methods
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1392-1405
%V 48
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a4/
%G ru
%F ZVMMF_2008_48_8_a4
G. Yu. Kulikov; E. Yu. Khrustaleva. Automatic step size and order control in explicit one-step extrapolation methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 8, pp. 1392-1405. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a4/

[1] Kollatts L., Chislennye metody resheniya differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1953

[2] Henrici P., Discrete variable methods in ordinary differential equations, John Wiley and Sons, New York, London, 1962 | MR | Zbl

[3] Shtetter X., Analiz metodov diskretizatsii dlya obyknovennykh differentsialnykh uravnenii, Mir, M., 1978 | MR

[4] Kalitkin H. H., Chislennye metody, Nauka, M., 1978 | MR

[5] Rakitskii Yu. V., Ustinov S. M., Chernorutskii I. G., Chislennye metody resheniya zhestkikh sistem, Nauka, Fiz. mat. lit., M., 1979 | MR

[6] Ortega Dzh., Pul U., Vvedenie v chislennye metody resheniya differentsialnykh uravnenii, Nauka, M., 1986 | MR | Zbl

[7] Bakhvalov N. S., Zhidkov H. H., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[8] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR

[9] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[10] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR

[11] Arushanyan O. B., Zaletkin S. F., Chislennoe reshenie obyknovennykh differentsialnykh uravnenii na Fortrane, Izd-vo MGU, M., 1990 | MR | Zbl

[12] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[13] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[14] Butcher J. C., Numerical methods for ordinary differential equations, John Wiley and Sons, Chichester, 2003 | MR

[15] Gaiton A., Fiziologiya krovoobrascheniya: Minutnyi ob'em serdtsa i ego regulyatsiya, Meditsina, M., 1969

[16] Grodinz F., Teoriya regulirovaniya i biologicheskie sistemy, Mir, M., 1966

[17] Marchuk G. I., Matematicheskie metody v immunologii. Vychislitelnye metody i eksperimenty, Nauka, M., 1991 | MR

[18] Nerreter V., Raschet elektricheskikh tsepei na personalnoi EVM, Energoatomizdat, M., 1991

[19] Gragg W. B., Repeated extrapolation to the limit in the numerical solution of ordinary differential equations, Thesis, Univ. California, 1964

[20] Gragg W. B., “On extrapolation algorithms for ordinary initial value problems”, SIAM J. Numer. Analys. Ser. B, 2 (1965), 384–403 | DOI | MR | Zbl

[21] Bulirsch R., Stoer J., “Numerical treatment of ordinary differential equations by extrapolation methods”, Numer. Math., 8 (1966), 1–13 | DOI | MR | Zbl

[22] Stetter H. J., “Symmetric two-step algorithms for ordinary differential equations”, Computing, 5 (1970), 267–280 | DOI | MR | Zbl

[23] Kulikov G. Yu., Chislennye metody s kontrolem globalnoi oshibki dlya resheniya differentsialnykh i differentsialno-algebraicheskikh uravnenii indeksa 1, Dis. $\dots$ dokt. fiz.-matem. nauk, Ulyanovskii gos. un-t, Ulyanovsk, 2002

[24] Kulikov G. Yu., “On implicit extrapolation methods for ordinary differential equations”, Rus. J. Numer. Analys. Math. Modelling, 17:1 (2002), 41–69 | MR

[25] Kulikov G. Yu., “O neyavnykh ekstrapolyatsionnykh metodakh dlya sistem differentsialno-algebraicheskikh uravnenii”, Vestn. MGU. Ser. 1. Matem., Mekhan., 2002, no. 5, 3–7 | MR

[26] Kulikov G. Yu., “One-step methods and implicit extrapolation technique for index 1 differential-algebraic systems”, Rus. J. Numer. Analys. Math. Modelling, 19:6 (2004), 527–553 | DOI | MR | Zbl

[27] Kulikov G. Yu., Shindin S. K., “O mnogoshagovykh ekstrapolyatsionnykh metodakh dlya obyknovennykh differentsialnykh uravnenii”, Dokl. RAN, 372:3 (2000), 301–304 | MR | Zbl

[28] Kulikov G. Yu., Shindin S. K., “Global error estimation and extrapolated multistep methods for index 1 differential-algebraic systems”, BIT, 45 (2005), 517–542 | DOI | MR | Zbl

[29] Aitken A. C., “On interpolation by iteration of proportional parts, without the use of differences”, Proc. Edinburg Math. Soc. Second Ser., 3 (1932), 56–76 | DOI

[30] Neville E. H., “Iterative interpolation”, Ind. Math. Soc. J., 20 (1943), 87–120

[31] Kulikov G. Yu., “A theory of symmetric one-step methods for differential-algebraic equations”, Rus. J. Numer. Analys. Math. Modelling, 12:6 (1997), 501–523 | DOI | MR | Zbl

[32] Kulikov G. Yu., “Revision of the theory of symmetric one-step methods for ordinary differential equations”, Korean J. Comput. Appl. Math., 5:3 (1998), 579–600 | MR | Zbl