Numerical algorithm for variational assimilation of sea surface temperature data
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 8, pp. 1371-1391 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of variational assimilation of sea surface temperature data is formulated and studied. An algorithm for solving the problem is developed. Numerical results are presented.
@article{ZVMMF_2008_48_8_a3,
     author = {V. I. Agoshkov and E. I. Parmuzin and V. P. Shutyaev},
     title = {Numerical algorithm for variational assimilation of sea surface temperature data},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1371--1391},
     year = {2008},
     volume = {48},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a3/}
}
TY  - JOUR
AU  - V. I. Agoshkov
AU  - E. I. Parmuzin
AU  - V. P. Shutyaev
TI  - Numerical algorithm for variational assimilation of sea surface temperature data
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1371
EP  - 1391
VL  - 48
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a3/
LA  - ru
ID  - ZVMMF_2008_48_8_a3
ER  - 
%0 Journal Article
%A V. I. Agoshkov
%A E. I. Parmuzin
%A V. P. Shutyaev
%T Numerical algorithm for variational assimilation of sea surface temperature data
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1371-1391
%V 48
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a3/
%G ru
%F ZVMMF_2008_48_8_a3
V. I. Agoshkov; E. I. Parmuzin; V. P. Shutyaev. Numerical algorithm for variational assimilation of sea surface temperature data. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 8, pp. 1371-1391. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a3/

[1] Agoshkov V. I., Zalesny V. B., Mimik F. P., Rusakov A. S., “Study and solution of identification problems for nonstationary 2D- and 3D-convection-diffusion equation”, Russ. J. Numer. Analys. Math. Modelling, 20:1 (2005), 19–43 | DOI | MR | Zbl

[2] Agoshkov V. I., Metody optimalnogo upravleniya i sopryazhennykh uravnenii v zadachakh matematicheskoi fiziki, IVM RAN, M., 2003 | MR

[3] Agoshkov V. I., Gusev A. V., Diansky N. A., Oleinikov R. V., “An algorithm for the solution of the ocean hydrothermodunamics problem with variational assimilation of the sea level function data”, Russ. J. Numer. Analys. Math. Modelling, 22:2 (2007), 133–162 | DOI | MR

[4] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[5] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[6] Agoshkov V. I., Ipatova V. M., “Existence theorem for a three-dimensional ocean dynamics model and a data assimilation problem”, Dokl. Acad. Nauk, 75:1 (2007), 28–30

[7] Marchuk G. I., Dymnikov V. P., Zalesnyi V. B., Matematicheskie modeli v geofizicheskoi gidrodinamike i chislennye metody ikh realizatsii, Gidrometeoizdat, L., 1987 | MR | Zbl

[8] Yanenko H. H., Demidov G. V., “Metod slaboi approksimatsii kak konstruktivnyi metod postroeniya resheniya zadachi Koshi”, Nekotorye vopr. vychisl. i prikl. matem., Nauka, Novosibirsk, 1966

[9] Alekseev V. V., Zalesnyi V. B., “Chislennaya model krupnomasshtabnoi dinamiki okeana”, Vychislitelnye protsessy i sistemy, Nauka, M., 1993, 232–253

[10] Dianskii H. A., Bagno A. B., Zalesnyi V. B., “Sigma-model globalnoi tsirkulyatsii okeana i ee chuvstvitelnost k variatsiyam napryazheniya treniya vetra”, Izv. AN. Fiz. atmosfery i okeana, 38:4 (2002), 537–556

[11] Dianskii H. A., Zalesnyi V. B., Moshonkin C. H., Rusakov A. C., “Modelirovanie mussonnoi tsirkulyatsii Indiiskogo okeana s vysokim prostranstvennym razresheniem”, Okeanologiya, 46:4 (2006), 11–12 | MR

[12] Marchuk G. I., Rusakov A.S., Zalesny V.B., Diansky N.A., Splitting numerical technique with application to the high resolution simulation of the Indian ocean circulation, Pure and Appl. Geophys., Birkhäuser, Basel, 2005

[13] Agoshkov V. I., “Inverse problems of the mathematical theory of tides: boundary-function problem”, Russ. J. Numer. Analys. Math. Modelling, 20:1 (2005), 1–18 | DOI | MR | Zbl

[14] Ibrayev R. A., “Model of enclosed and semi-enclosed sea hydrodynamics”, Russ. J. Numer. Analys. Math. Modelling, 16:4 (2001), 291–304 | Zbl