Quadrature formulas for periodic functions and their application to the boundary element method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 8, pp. 1344-1361 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two-dimensional and axisymmetric boundary value problems for the Laplace equation in a domain bounded by a closed smooth contour are considered. The problems are reduced to integral equations with a periodic singular kernel, where the period is equal to the length of the contour. Taking into account the periodicity property, high-order accurate quadrature formulas are applied to the integral operator. As a result, the integral equations are reduced to a system of linear algebraic equations. This substantially simplifies the numerical schemes for solving boundary value problems and considerably improves the accuracy of approximation of the integral operator. The boundaries are specified by analytic functions, and the remainder of the quadrature formulas decreases faster than any power of the integration step size. The examples include the two-dimensional potential inviscid circulation flow past a single blade or a grid of blades; the axisymmetric flow past a torus; and free-surface flow problems, such as wave breakdown, standing waves, and the development of Rayleigh–Taylor instability.
@article{ZVMMF_2008_48_8_a1,
     author = {A. G. Petrov},
     title = {Quadrature formulas for periodic functions and their application to the boundary element method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1344--1361},
     year = {2008},
     volume = {48},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a1/}
}
TY  - JOUR
AU  - A. G. Petrov
TI  - Quadrature formulas for periodic functions and their application to the boundary element method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1344
EP  - 1361
VL  - 48
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a1/
LA  - ru
ID  - ZVMMF_2008_48_8_a1
ER  - 
%0 Journal Article
%A A. G. Petrov
%T Quadrature formulas for periodic functions and their application to the boundary element method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1344-1361
%V 48
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a1/
%G ru
%F ZVMMF_2008_48_8_a1
A. G. Petrov. Quadrature formulas for periodic functions and their application to the boundary element method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 8, pp. 1344-1361. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_8_a1/

[1] Voinov V. V., Voinov O. V., Petrov A. G., “Metod rascheta potentsialnogo obtekaniya tela vrascheniya potokom neszhimaemoi zhidkosti”, Zh. vychisl. matem. i matem. fiz., 14:3 (1974), 797–802 | MR | Zbl

[2] Voinov V. V., Voinov O. V., “Chislennyi metod rascheta nestatsionarnykh dvizhenii idealnoi neszhimaemoi zhidkosti so svobodnymi poverkhnostyami”, Dokl. AN SSSR, 221:3 (1975), 559–562 | Zbl

[3] Voinov V. V., Voinov O. V., “O dvizhenii i zapolnenii polostei v bezgranichnoi zhidkosti i okolo ploskosti”, Zh. prikl. mekhan. i tekhn. fiz., 1975, no. 1, 89–95

[4] Voinov V. V., Voinov O. V., “O skheme zakhlopyvaniya kavitatsionnogo puzyrka okolo stenki i obrazovaniya kumulyativnoi struiki”, Dokl. AN SSSR, 227:1 (1976), 63–66

[5] Brebbia C. A., Telles J. C. F., Wrobel L. C., Boundary element techniques, Springer, Berlin, New York, 1984

[6] Babenko K. I., Osnovy chislennogo analiza, R, M., Izhevsk, 2002

[7] Guter P. C., Kudryavtsev L. D., Levitan B. M., Elementy teorii funktsii, Fizmatlit, M., 1963

[8] Saranen J., Vainikko G., Periodic integral and pseudodifferential equations with numerical approximation, Springer, Berlin, 2002 | MR | Zbl

[9] Kress R., Linear integral equation, Springer, Berlin, 1999 | MR | Zbl

[10] Khemming P. B., Chislennye metody, Nauka, M., 1972

[11] Sobolev S. L., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR

[12] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 1972

[13] Kress R., “Boundary integral equations in acoustic scattering”, Math. Comput. Modelling, 15:3–5 (1991), 229–243 | DOI | MR | Zbl

[14] Kress R., Sloan I. H., “On the numerical solution of a logarithmic integral equation of the first kind for Helmholtz equation”, Numer. Math., 66 (1993), 199–214 | DOI | MR | Zbl

[15] Sedov L. I., Ploskie zadachi gidrodinamiki i aerodinamiki, Fizmatgiz, M., 1980 | MR

[16] Petrov A. G., Smolyanin V. G., “Raschet nestatsionarnykh voln na poverkhnosti tyazheloi zhidkosti konechnoi glubiny”, Prikl. matem. i mekhan., 57:4 (1993), 137–143 | MR | Zbl

[17] Terentiev A. G., Pavlova N. A., “Numerical analysis of cavitating flows by direct iterative manner”, 6-th Internal. Symp. on Cavitation, September, Wageningen, Netherland, 2006, 1–12

[18] Sidorov O. P., “Reshenie zadachi obtekaniya osesimmetrichnogo tela”, Tr. Kazanskogo aviats. in-ta, Kazan, 1958, 23–42

[19] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR

[20] Petrov A. G., Smolyanin V. G., “Raschet profilya kapillyarno-gravitatsionnoi volny na poverkhnosti tyazheloi zhidkosti konechnoi glubiny”, Vestn. MGU, 1991, no. 2, 92–96 | Zbl

[21] Petrov A. G., Stankevich D. B., Sternin L. E., “Razrabotka metoda granichnykh elementov primenitelno k obtekaniyu profilei gidroturbin vyazkoi zhidkostyu”, Tr. NPO Energomash., 25, M., 2007, 118–138

[22] Petrov A. G., Smolyanin B. G., “Uravnenie dlya krivizny i interpolyatsii linii, menyayuscheisya vo vremeni”, Vestn. MGU. Ser. 1. Matem., mekhan., 1995, no. 6, 69–71 | Zbl

[23] Petrov A. G., Smolyanin V. G., “Uravnenie dlya krivizny linii, menyayuscheisya vo vremeni i imeyuschei zadannoe raspredelenie otmechennykh na nei tochek”, Uspekhi matem. nauk, 50:5 (1995), 249–250 | MR | Zbl