Unstructured-grid finite-volume discretization of the Navier–Stokes equations based on high-resolution difference schemes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1250-1273 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An unstructured-grid discretization of the Navier–Stokes equations based on the finite volume method and high-resolution difference schemes in time and space is described as applied to fluid dynamics problems in two and three dimensions. The control volume is defined as the cell-vertex median dual control volume. The fluxes through the faces of internal and boundary control volumes are written identically, which simplifies their software implementation. The gradient and the pseudo-Laplacian are calculated at the midpoint of a control volume face by using relations adapted to the computations on a strongly stretched grid in the boundary layer.
@article{ZVMMF_2008_48_7_a9,
     author = {K. N. Volkov},
     title = {Unstructured-grid finite-volume discretization of the {Navier{\textendash}Stokes} equations based on high-resolution difference schemes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1250--1273},
     year = {2008},
     volume = {48},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a9/}
}
TY  - JOUR
AU  - K. N. Volkov
TI  - Unstructured-grid finite-volume discretization of the Navier–Stokes equations based on high-resolution difference schemes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1250
EP  - 1273
VL  - 48
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a9/
LA  - ru
ID  - ZVMMF_2008_48_7_a9
ER  - 
%0 Journal Article
%A K. N. Volkov
%T Unstructured-grid finite-volume discretization of the Navier–Stokes equations based on high-resolution difference schemes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1250-1273
%V 48
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a9/
%G ru
%F ZVMMF_2008_48_7_a9
K. N. Volkov. Unstructured-grid finite-volume discretization of the Navier–Stokes equations based on high-resolution difference schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1250-1273. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a9/

[1] Hirsch C., Numerical computation of internal and external flows, John Wiley Sons, New York, 1990 | Zbl

[2] Barth T. J., Aspects of unstructured grids and finite-volume solvers for the Euler and Navier–Stokes equations, VKI Lect. Ser. 1994-05, Von Karman Inst. Fluid Dynamics, Belgium, 1994

[3] Volkov K. H., “Primenenie metoda kontrolnogo ob'ema dlya resheniya zadach mekhaniki zhidkosti i gaza na nestrukturirovannykh setkakh”, Vychisl. metody i programmirovanie, 6:1 (2005), 43–60

[4] Volkov K. N., “Granichnye usloviya na stenke i setochnaya zavisimost resheniya v raschetakh turbulentnykh techenii na nestrukturirovannykh setkakh”, Vychisl. metody i programmirovanie, 7:1 (2006), 211–223

[5] Jameson A., Mavripils D., Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh, AIAA Paper No 85-0435, 1985

[6] Morgan K., Perire J., Peiro J., Hassan O., “The computation of three dimensional flows using unstructured grids”, Comput. Meth. Appl. Mech. Eng., 87 (1991), 335–352 | DOI | Zbl

[7] Roe P. L., “Approximate Riemann solvers, parameter vectors, and difference schemes”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl

[8] Luo H., Baum J. D., Lohner R., “Egde-based finite element scheme for the Euler equations”, AIAA Journal, 32:6 (1994), 1183–1190 | DOI | Zbl

[9] Crumpton P. I., Moinier P., Giles M. B., “An unstructured algorithm for high Reynolds number flows on highly stretched grids”, Proc. 10th Internat. Conf. Numer. Meth. Laminar and Turbulent Flows (21–25 July 1997), Univ. Wales, Swansea: United Kingdom, 1997

[10] Jameson A., “Transonic aerofoil calculations using the Euler equations”, Proc. IMA Conf. Numer. Meth. Aeronautical Fluid Dynamics (March 1981), Acad. Press, Reading, United Kingdom, 1982, 289–308

[11] Crumpton P. I., A cell vertex method for 3d Navier–Stokes solutions, Techn. Rep. Oxford Univ. Comput. Lab. Oxford, no NA-93/09, Univ. of Oxford, 1993

[12] Moinier P., Giles M. B., “Stability analysis of preconditioned approximations of the Euler equations on unstructured meshes”, J. Comput. Phys., 178 (2002), 498–519 | DOI | MR | Zbl

[13] Moinier P., Giles M. B., “Compressible Navier–Stokes equations for low Mach number applications”, Proc. ECCOMAS Comput. Fluid Dynamics Conf. (4–7 Sept., 2001), Swansea: United Kingdom, 2001