Spline collocation method for linear singular hyperbolic systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1230-1249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some classes of singular systems of partial differential equations with variable matrix coefficients and internal hyperbolic structure are considered. The spline collocation method is used to numerically solve such systems. Sufficient conditions for the convergence of the numerical procedure are obtained. Numerical results are presented.
@article{ZVMMF_2008_48_7_a8,
     author = {S. V. Gaidomak},
     title = {Spline collocation method for linear singular hyperbolic systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1230--1249},
     year = {2008},
     volume = {48},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a8/}
}
TY  - JOUR
AU  - S. V. Gaidomak
TI  - Spline collocation method for linear singular hyperbolic systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1230
EP  - 1249
VL  - 48
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a8/
LA  - ru
ID  - ZVMMF_2008_48_7_a8
ER  - 
%0 Journal Article
%A S. V. Gaidomak
%T Spline collocation method for linear singular hyperbolic systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1230-1249
%V 48
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a8/
%G ru
%F ZVMMF_2008_48_7_a8
S. V. Gaidomak. Spline collocation method for linear singular hyperbolic systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1230-1249. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a8/

[1] Demidenko G. V., Uspenskii C. B., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchn. kniga, Novosibirsk, 1998 | MR | Zbl

[2] Nakoryakov V. E., Pokusaev V. G., Shreiber I. R., Rasprostranenie voln v gazo- i paro-zhidkostnykh sredakh, Novosibirsk, 1983

[3] Tairov E. A., Zapov V. V., “Integralnaya model nelineinoi dinamiki parogeneriruyuschego kanala na osnove analiticheskikh reshenii”, VANT. Fiz. yadernykh reaktorov, 1991, no. 3, 14–20

[4] Ruschinskii V. M., “Prostranstvennye lineinye i nelineinye modeli kotlogeneratorov”, Vopr. identifikatsii i modelirovaniya, 1968, 8–15

[5] Campbell S. L., Marzalek W., “The index of infinite dimensional implicit system”, Math. Comput. Modelling System., 5:1 (1999), 18–42 | DOI | MR | Zbl

[6] Gaidomak C. B., Levin A. A., Chistyakov V. F., “Matematicheskie aspekty realizatsii modeli konvektivnogo teploobmennika s protivotochnym napravleniem materialnykh potokov”, Tr. XIII Baikalskoi Mezhdunar. shkoly-seminara “Metody optimizatsii i ikh prilozh.”, v. 3, Obratnye i nekorrektnye zadachi, Severobaikalsk, 2005, 94–99

[7] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR

[8] Gaidomak C. B., Chistyakov V. F., “O sistemakh ne tipa Koshi–Kovalevskoi indeksa $(1,k)$”, Vychisl. tekhnologii, 10:2 (2005), 45–59 | Zbl

[9] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Fizmatlit, M., 1980 | MR

[10] Chistyakov V. F., Algebro-differentsialnye operatory s konechnomernym yadrom, Sibirskaya izdat. firma RAN “Nauka”, Novosibirsk, 1996 | MR | Zbl

[11] Tikhonov A. N., Vasileva A. B., Sveshnikov A. G., Differentsialnye uravneniya, Nauka, M., 1980 | MR

[12] Gaidomak S. V., “O sravnenii metoda pryamykh i raznostnogo metoda pri reshenii vyrozhdennykh sistem indeksa (1,1)”, Tr. XIII Baikalskoi Mezhdunar. shkoly-seminara “Metody optimizatsii i ikh prilozh.”, v. 3, Obratnye i nekorrektnye zadachi, Severobaikalsk, 2005, 88–93