On the behavior of solutions to the Cauchy problem for a degenerate parabolic equation with inhomogeneous density and a source
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1214-1229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem for a degenerate parabolic equation with a source and inhomogeneous density of the form $$ \rho(x)\frac{\partial u}{\partial t}=\operatorname{div}(u^{m-1}|Du|^{\lambda-1}Du)+\rho(x)u^p. $$ is studied. Time global existence and nonexistence conditions are found for a solution to the Cauchy problem. Exact estimates of the solution are obtained in the case of global solvability.
@article{ZVMMF_2008_48_7_a7,
     author = {A. V. Martynenko and A. F. Tedeev},
     title = {On the behavior of solutions to the {Cauchy} problem for a~degenerate parabolic equation with inhomogeneous density and a~source},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1214--1229},
     year = {2008},
     volume = {48},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a7/}
}
TY  - JOUR
AU  - A. V. Martynenko
AU  - A. F. Tedeev
TI  - On the behavior of solutions to the Cauchy problem for a degenerate parabolic equation with inhomogeneous density and a source
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1214
EP  - 1229
VL  - 48
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a7/
LA  - ru
ID  - ZVMMF_2008_48_7_a7
ER  - 
%0 Journal Article
%A A. V. Martynenko
%A A. F. Tedeev
%T On the behavior of solutions to the Cauchy problem for a degenerate parabolic equation with inhomogeneous density and a source
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1214-1229
%V 48
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a7/
%G ru
%F ZVMMF_2008_48_7_a7
A. V. Martynenko; A. F. Tedeev. On the behavior of solutions to the Cauchy problem for a degenerate parabolic equation with inhomogeneous density and a source. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1214-1229. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a7/

[1] Fujita H., “On the blowing up of solutions to the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124 | MR | Zbl

[2] Galaktionov V. A., Levine H. A., “A general approach to critical Fujita exponents and systems”, Nonlinear Analys., 34 (1998), 1005–1027 | DOI | MR | Zbl

[3] Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Samarskii A. A., “O neogranichennykh resheniyakh zadachi Koshi dlya parabolicheskogo uravneniya $u_t=\nabla(u^\sigma\nabla u)+u^\beta$”, Dokl. AN SSSR, 252:6 (1980), 1362–1364 | MR | Zbl

[4] Andreucci D., Tedeev A. F., “A Fujita type result for degenerate Neumann problem in domains with noncompact boundary”, J. Math. Analys. and Appl., 231 (1999), 543–567 | DOI | MR | Zbl

[5] Andreucci D., Tedeev A. F., “Optimal bounds and blow-up phenomena for parabolic problems in narrowing domains”, Proc. Roy. Soc. Edinburg Sect. A, 128:6 (1998), 1163–1180 | MR | Zbl

[6] Deng K., Levine H. A., “The role of critical exponents in blow up theorems: The sequel”, J. Math. Analys. and Appl., 243 (2000), 85–126 | DOI | MR | Zbl

[7] Kalashnikov A. C., “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, Uspekhi matem. nauk, 42:2(254) (1987), 135–176 | MR | Zbl

[8] Samarskii A. A., Galaktionov B. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[9] Kamin S., Rosenau P., “Nonlinear diffusion in a finite mass medium”, Communs Pure and Appl. Math., 35 (1982), 113–127 | DOI | MR | Zbl

[10] Kamin S., Rosenau P., “Propagation of thermal waves in an inhomogeneous medium”, Communs Pure and Appl. Math., 34 (1981), 831–852 | DOI | MR | Zbl

[11] Kamin S., Kersner R., “Disappearance of interfaces in finite time”, Meccanica, 28 (1993), 117–120 | DOI | Zbl

[12] Guedda M., Hilhorst D., Peletier M. A., “Disappearing interfaces in nonlinear diffusion”, Advanced Math. Sci. Appl., 7 (1997), 695–710 | MR | Zbl

[13] Galaktionov V. A., Kinq J. R., “On the behaviour of blow-up interfaces for an inhomogeneous filtration equation”, J. Appl. Math., 57 (1996), 53–77 | MR | Zbl

[14] Kersner R., Reyes G., Tesei A., “On a class of nonlinear parabolic equations with variable density and absortion”, Advances Different Equat., 7:2 (2002), 155–176 | MR | Zbl

[15] Galaktionov V. A., Kamin S., Kersner R., Vazquez J. L., “Intermediate asymptotics for inhomogeneous nonlinear heat conduction”, J. Math. Sci., 120:3 (2004), 1277–1294 | DOI | MR

[16] Tedeev A. F., “Usloviya suschestvovaniya i nesuschestvovaniya v tselom po vremeni kompaktnogo nositelya reshenii zadachi Koshi dlya kvazilineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii”, Sibirskii matem. zhurnal, 45:1 (2004), 189–200 | MR | Zbl

[17] Kurdyumov S. P., Kurkina E. S., “Spektr sobstvennykh funktsii avtomodelnoi zadachi dlya nelineinogo uravneniya teploprovodnosti s istochnikom”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1619–1637 | MR | Zbl

[18] Martynenko A. B., Tedeev A. F., “Zadacha Koshi dlya kvazilineinogo parabolicheskogo uravneniya s istochnikom i neodnorodnoi plotnostyu”, Zh. vychisl. matem. i matem. fiz., 47:2 (2007), 245–255 | MR | Zbl

[19] Andreucci D., Tedeev A. F., “Universal bounds at the blow-up time for nonlinear parabolic equations”, Advances Different. Equat., 10:1 (2005), 89–120 | MR | Zbl

[20] Reyes G., Vázquez J. L., “A weighted symmetrization for nonlinear elliptic and parabolik equations in inhomogeneous media”, J. European Math. Soc., 8 (2006), 531–554 | MR | Zbl

[21] Bernis F., “Existence results for doubly nonlinear higher order parabolic equations on unbounded domains”, Math. Ann., 279 (1988), 373–394 | DOI | MR | Zbl

[22] Alt H. W., Luckhaus S., “Quasilinear elliptic-parabolic differential equations”, Math. Z, 183 (1983), 311–341 | DOI | MR | Zbl

[23] Vespri V., “On the local behavior of solutions of a certain class of doubly nonlinear parabolic equations”, Manuscripta Math., 75 (1992), 65–80 | DOI | MR | Zbl

[24] Caffarelli L., Kohn R., Nirenberg L., “First order interpolation inequalities with weights”, Compositio Math., 53 (1984), 259–275 | MR | Zbl

[25] Ladyzhenskaya O. A., Solonnikov B. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967