Global search in the optimal control problem with a terminal objective functional represented as the difference of two convex functions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1187-1201 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonconvex optimal control problem is examined for a system that is linear with respect to state and has a terminal objective functional representable as the difference of two convex functions. A new local search method is proposed, and its convergence is proved. A strategy is also developed for the search of a globally optimal control process, because the Pontryagin and Bellman principles as applied to the above problem do not distinguish between the locally and globally optimal processes. The convergence of this strategy under appropriate conditions is proved.
@article{ZVMMF_2008_48_7_a4,
     author = {A. S. Strekalovskii and M. V. Yanulevich},
     title = {Global search in the optimal control problem with a~terminal objective functional represented as the difference of two convex functions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1187--1201},
     year = {2008},
     volume = {48},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a4/}
}
TY  - JOUR
AU  - A. S. Strekalovskii
AU  - M. V. Yanulevich
TI  - Global search in the optimal control problem with a terminal objective functional represented as the difference of two convex functions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1187
EP  - 1201
VL  - 48
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a4/
LA  - ru
ID  - ZVMMF_2008_48_7_a4
ER  - 
%0 Journal Article
%A A. S. Strekalovskii
%A M. V. Yanulevich
%T Global search in the optimal control problem with a terminal objective functional represented as the difference of two convex functions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1187-1201
%V 48
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a4/
%G ru
%F ZVMMF_2008_48_7_a4
A. S. Strekalovskii; M. V. Yanulevich. Global search in the optimal control problem with a terminal objective functional represented as the difference of two convex functions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1187-1201. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a4/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[2] Baturin V. A., Urbanovich D. E., Priblizhennye metody optimalnogo upravleniya, osnovannye na printsipe rasshireniya, Nauka, Novosibirsk, 1997 | MR | Zbl

[3] Gurman V. I., Printsip rasshireniya v zadachakh upravleniya, Nauka, M., 1997 | MR | Zbl

[4] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[5] Krotov V. F., Osnovy teorii optimalnogo upravleniya, Vyssh. shkola, M., 1990 | MR

[6] Braison A., Kho Yu-Shi, Prikladnaya teoriya optimalnogo upravleniya, Mir, M., 1972

[7] Strekalovskii A. C., Sharankhaeva E. V., “Globalnyi poisk v nevypukloi zadache optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 45:10 (2005), 1785–1800 | MR | Zbl

[8] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[9] Gabasov R., Kirillova F. M., Kachestvennaya teoriya optimalnykh protsessov, Nauka, M., 1971 | MR

[10] Tyatyushkin A. I., Mnogometodnaya tekhnologiya optimizatsii upravlyaemykh sistem, Nauka, Novosibirsk, 2006 | Zbl

[11] Polak E., Chislennye metody optimizatsii. Edinyi podkhod, Mir, M., 1974 | MR | Zbl

[12] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl

[13] Massel L. V., Boldyrev E. A., Gornov A. Yu., Integratsiya informatsionnykh tekhnologii v sistemnykh issledovaniyakh energetiki, Nauka, Novosibirsk, 2003

[14] Strekalovskii A. C., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003

[15] Strekalovskii A. C., “Zadachi optimalnogo upravleniya s terminalnymi funktsionalami, predstavi- mymi v vide raznosti dvukh vypuklykh funktsii”, Zh. vychisl. matem. i matem. fiz., 47:11 (2007), 1865–1879 | MR

[16] Strekalovsky A. S., Vasiliev I. L., “On global search for non-convex optimal control problems”, Developments in Global Optimizat. Nonconvex Optimizat. and Its Applic., Kluwer Acad. Publ., Dordrecht, 1997, 121–133 | MR | Zbl

[17] Strekalovsky A. S., “On global maximum of a convex terminal functional in optimal control problems”, J. Global Optimizat., 7 (1995), 75–91 | DOI | MR | Zbl

[18] Li E., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972 | MR

[19] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[20] Gabasov R. F., Kirillova F. M., Optimizatsiya lineinykh sistem, Izd-vo Belorussk. un-ta, Minsk, 1973

[21] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[22] Antonik V. G., Srochko V. A., “K resheniyu zadach optimalnogo upravleniya na osnove metodov linearizatsii”, Zh. vychisl. matem. i matem. fiz., 32:7 (1992), 979–991 | MR | Zbl

[23] Strekalovskiy A. S., Yanulevich M. V., On one class of non-convex optimal control problems, II Intern. Conf. on Optimizat. and Optimal Control. Abstracts. Ulaanbaatar: Mongolia, July 17–20, 2007, 38–39 pp.