Determining the multiplicity of a root of a nonlinear algebraic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1181-1186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Newton's method is most frequently used to find the roots of a nonlinear algebraic equation. The convergence domain of Newton's method can be expanded by applying a generalization known as the continuous analogue of Newton's method. For the classical and generalized Newton methods, an effective root-finding technique is proposed that simultaneously determines root multiplicity. Roots of high multiplicity (up to 10) can be calculated with a small error. The technique is illustrated using numerical examples.
@article{ZVMMF_2008_48_7_a3,
     author = {N. N. Kalitkin and I. P. Poshivaylo},
     title = {Determining the multiplicity of a~root of a~nonlinear algebraic equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1181--1186},
     year = {2008},
     volume = {48},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a3/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - I. P. Poshivaylo
TI  - Determining the multiplicity of a root of a nonlinear algebraic equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1181
EP  - 1186
VL  - 48
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a3/
LA  - ru
ID  - ZVMMF_2008_48_7_a3
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A I. P. Poshivaylo
%T Determining the multiplicity of a root of a nonlinear algebraic equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1181-1186
%V 48
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a3/
%G ru
%F ZVMMF_2008_48_7_a3
N. N. Kalitkin; I. P. Poshivaylo. Determining the multiplicity of a root of a nonlinear algebraic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1181-1186. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a3/

[1] Ostrovskii A. B., Reshenie uravnenii i sistem uravnenii

[2] Voevodin V. V., Chislennye metody algebry. Teoriya i algoritmy

[3] Bakhvalov N. S., Zhidkov H. H., Kobelkov G. M., Chislennye metody

[4] Opredelenie kratnosti kornya metodom Nyutona http://www.exponenta.ru/educat/class/courses/vvm/theme-3/mathcad/ex3/ex3.htm

[5] Zeng Z., “Computing multiple roots of inexact polynomials”, Math. Comput., 74 (2005), 869–903 | MR | Zbl

[6] Gavurin M. K., “Nelineinye funktsionalnye uravneniya i nepreryvnye analogi iterativnykh metodov”, Izv. vuzov. Matematika, 1958, no. 5, 18–31 | MR | Zbl

[7] Zhidkov E. P., Puzynin I. V., “Ob odnom metode vvedeniya parametra pri reshenii kraevykh zadach dlya nelineinykh obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Zh. vychisl. matem. i matem. fiz., 7:5 (1967), 1086–1095 | Zbl

[8] Ermakov V. V., Kalitkin H. H., “Optimalnyi shag i regulyarizatsiya metoda Nyutona”, Zh. vychisl. matem. i matem. fiz., 21:2 (1981), 491–497 | MR | Zbl