A constructive algorithm for folding large-scale systems of linear inequalities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1167-1180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The conventional procedure for folding a system of linear inequalities based on the Fourier–Chernikov algorithm is supplemented with techniques for eliminating redundant inequalities, which considerably counteracts the increase in the system dimension. Exact and approximate methods are proposed, which are brought to algorithmic form and software implementation. Numerical results are discussed.
@article{ZVMMF_2008_48_7_a2,
     author = {A. M. Lukatskii and D. V. Shapot},
     title = {A~constructive algorithm for folding large-scale systems of linear inequalities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1167--1180},
     year = {2008},
     volume = {48},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a2/}
}
TY  - JOUR
AU  - A. M. Lukatskii
AU  - D. V. Shapot
TI  - A constructive algorithm for folding large-scale systems of linear inequalities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1167
EP  - 1180
VL  - 48
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a2/
LA  - ru
ID  - ZVMMF_2008_48_7_a2
ER  - 
%0 Journal Article
%A A. M. Lukatskii
%A D. V. Shapot
%T A constructive algorithm for folding large-scale systems of linear inequalities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1167-1180
%V 48
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a2/
%G ru
%F ZVMMF_2008_48_7_a2
A. M. Lukatskii; D. V. Shapot. A constructive algorithm for folding large-scale systems of linear inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1167-1180. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a2/

[1] Shapot D. V., “O postroenii ortogonalnykh proektsii tochechnykh mnozhestv, zadannykh sistemoi neravenstv”, Zh. vychisl. matem. i matem. fiz., 11:5 (1971), 1113–1126 | Zbl

[2] Motskin T. S., Raifa X., Tompson Dzh. L. i dr., “Metod dvoinogo opisaniya”, Matrichnye igry, Fizmatgiz, M., 1961, 81–109

[3] Chernikov C. H., Lineinye neravenstva, Nauka, M., 1968 | MR | Zbl

[4] Shapot D. V.,Lukatskii A. M., “Konstruktivnyi algoritm postroeniya ortogonalnykh proektsii mnogogrannykh mnozhestv”, Optimizatsiya, upravlenie, intellekt. Irkutsk: SEI SO RAN, 1995, no. 1, 77–91

[5] Bushenkov V. A., Lotov A. B., “Algoritm analiza nezavisimosti neravenstv v lineinoi sisteme”, Zh. vychisl. matem. i matem. fiz., 20:3 (1980), 562–572 | MR

[6] Lotov A. B., “Ob otsenke ustoichivosti i chisle obuslovlennosti mnozhestva reshenii sistemy lineinykh neravenstv”, Zh. vychisl. matem. i matem. fiz., 24:12 (1984), 1763–1774 | MR | Zbl

[7] Eremin I. I., Makhnev A. A., “Mezhdunarodnyi seminar po algebre i lineinoi optimizatsii, posvyaschennyi 90-letiyu so dnya rozhdeniya S. N. Chernikova”, Izv. Uralskogo gos. un-ta, 2004, no. 30, 183–184

[8] Efremov R. V., Kamenev G. K., Lotov A. B., “Postroenie ekonomnogo opisaniya mnogogrannika na osnove dvoistvennosti vypuklykh mnozhestv”, Dokl. RAN, 399:5 (2004), 594–596 | MR

[9] Golikov A. I., Evtushenko Yu. G., “Novyi metod resheniya sistem lineinykh ravenstv i neravenstv”, Dokl. RAN, 381:4 (2001), 444–447 | MR | Zbl

[10] Gutman P. O., Ioslovich I., “Ob obobschennoi zadache Volfa: predvaritelnyi analiz neotritsatelnosti bolshikh zadach lineinogo programmirovaniya s gruppovymi ogranicheniyami”, Avtomatika i telemekhan., 2007, no. 8, 116–125 | MR | Zbl