Arbitrary-order difference schemes for solving linear advection equations with constant coefficients by the Godunov method with antidiffusion
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1282-1293 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach to the construction of second-and higher order accurate difference schemes in time and space is described for solving the linear one-and multidimensional advection equations with constant coefficients by the Godunov method with antidiffusion. The differential approximations for schemes of up to the fifth order are constructed and written. For multidimensional advection equations with constant coefficients, it is shown that Godunov schemes with splitting over spatial variables are preferable, since they have a smaller truncation error than schemes without splitting. The high resolution and efficiency of the difference schemes are demonstrated using test computations.
@article{ZVMMF_2008_48_7_a11,
     author = {N. Ya. Moiseev and I. Yu. Silant'eva},
     title = {Arbitrary-order difference schemes for solving linear advection equations with constant coefficients by the {Godunov} method with antidiffusion},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1282--1293},
     year = {2008},
     volume = {48},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a11/}
}
TY  - JOUR
AU  - N. Ya. Moiseev
AU  - I. Yu. Silant'eva
TI  - Arbitrary-order difference schemes for solving linear advection equations with constant coefficients by the Godunov method with antidiffusion
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1282
EP  - 1293
VL  - 48
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a11/
LA  - ru
ID  - ZVMMF_2008_48_7_a11
ER  - 
%0 Journal Article
%A N. Ya. Moiseev
%A I. Yu. Silant'eva
%T Arbitrary-order difference schemes for solving linear advection equations with constant coefficients by the Godunov method with antidiffusion
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1282-1293
%V 48
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a11/
%G ru
%F ZVMMF_2008_48_7_a11
N. Ya. Moiseev; I. Yu. Silant'eva. Arbitrary-order difference schemes for solving linear advection equations with constant coefficients by the Godunov method with antidiffusion. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1282-1293. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a11/

[1] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[2] Godunov S. K., Zabrodin A. B., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[3] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[4] Van Leer B. J., “Towards the ultimate conservative difference scheme. Second-order sequi to Godunov's Method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI

[5] Colella P., Woodward P. R., “The piecewise parabolic method (PPM) for gas dynamical simulations”, J. Comput. Phys., 54:1 (1984), 174–201 | DOI | MR | Zbl

[6] Takewaki H., Nishiguchi A., Yabe T., “Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations”, J. Comput. Phys., 61 (1985), 261–268 | DOI | MR | Zbl

[7] Kopchenov V. I., Kraiko A. H., “Monotonnaya raznostnaya skhema vtorogo poryadka dlya giperbolicheskikh sistem s dvumya nezavisimymi peremennymi”, Zh. vychisl. matem. i matem. fiz., 23:4 (1983), 848–859 | MR | Zbl

[8] Menshov I. S., “Povyshenie poryadka approksimatsii skhemy Godunova na osnove resheniya obobschennoi zadachi Rimana”, Zh. vychisl. matem. i matem. fiz., 30:9 (1990), 1357–1371 | MR

[9] Fedorenko R. P., “Primenenie raznostnykh skhem vysokoi tochnosti dlya chislennogo resheniya giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 2:6 (1962), 1122–1128 | MR | Zbl

[10] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnykh k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77

[11] Toro E. F., Riemann solvers and numerical methods lor fluid dynamics, 2nd ed., Springer, Berlin, 1999 | MR

[12] Shokin N. I., Metod differentsialnogo priblizheniya, Nauka, Novosibirsk, 1979

[13] Moiseev N. Ya., “Ob odnoi modifikatsii raznostnoi skhemy Godunova”, VANT. Ser. Metodiki i programmy chisl. resheniya zadach matem. fiz., 1986, no. 3, 35–43 | MR

[14] Moiseev N. Ya., “Antidiffuziya dlya modifitsirovannogo metoda Godunova”, XI Yubileinaya Mezhdunar. konf. po vychisl. mekhan. i sovrem. prikl. programmnym sredstvam, Tezisy dokl. (Pereslavl-Zalesskii, 7–12 iyunya, 1999)

[15] Kolmogorov V. L., Makotra O. A., Moiseev N. Ya., “Matematicheskaya model dlya chislennogo resheniya nestatsionarnykh zadach mekhaniki tverdogo tela modifitsirovannym metodom Godunova”, Prikl. matem. i tekhn. fiz., 2004, no. 1, 66–72 | Zbl

[16] Dyakonov V. P., Maple 8 v matematike, fizike i obrazovanii, SOLON-Press, M., 2003

[17] Bagrinovskii K. A., Godunov S. K., “Raznostnye skhemy dlya mnogomernykh zadach”, Dokl. AN SSSR, 115 (1957), 431–433 | MR

[18] Godunov S. K., Ryabenkii B. C., Raznostnye skhemy, Nauka, M., 1977

[19] Andersen D., Tannekhill Dzh., Pletcher R., Vychislitelnaya gidromekhanika i teploobmen, Mir, M., 1990

[20] Yanenko H. H., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[21] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988 | MR

[22] Fromm J. D., “A method for reducing dispersion in convective difference schemes”, J. Comput. Phys., 3:1 (1968), 176–189 | DOI | Zbl

[23] Ivanov M. Ya., Koretskii V. V., Kurochkina N. Ya., “Issledovanie svoistv raznostnykh skhem skvoznogo scheta vtorogo poryadka approksimatsii”, Chisl. metody mekhan. sploshnoi sredy. Novosibirsk: ITPM SO AN SSSR, 2:2 (1980), 41–63 | MR

[24] Godunov S. K., Vospominaniya o raznostnykh skhemakh, Nauch. kniga, Novosibirsk, 1997