Arbitrary-order difference schemes for solving linear advection equations with constant coefficients by the Godunov method with antidiffusion
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1282-1293
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              An approach to the construction of second-and higher order accurate difference schemes in time and space is described for solving the linear one-and multidimensional advection equations with constant coefficients by the Godunov method with antidiffusion. The differential approximations for schemes of up to the fifth order are constructed and written. For multidimensional advection equations with constant coefficients, it is shown that Godunov schemes with splitting over spatial variables are preferable, since they have a smaller truncation error than schemes without splitting. The high resolution and efficiency of the difference schemes are demonstrated using test computations.
            
            
            
          
        
      @article{ZVMMF_2008_48_7_a11,
     author = {N. Ya. Moiseev and I. Yu. Silant'eva},
     title = {Arbitrary-order difference schemes for solving linear advection equations with constant coefficients by the {Godunov} method with antidiffusion},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1282--1293},
     publisher = {mathdoc},
     volume = {48},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a11/}
}
                      
                      
                    TY - JOUR AU - N. Ya. Moiseev AU - I. Yu. Silant'eva TI - Arbitrary-order difference schemes for solving linear advection equations with constant coefficients by the Godunov method with antidiffusion JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 1282 EP - 1293 VL - 48 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a11/ LA - ru ID - ZVMMF_2008_48_7_a11 ER -
%0 Journal Article %A N. Ya. Moiseev %A I. Yu. Silant'eva %T Arbitrary-order difference schemes for solving linear advection equations with constant coefficients by the Godunov method with antidiffusion %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 1282-1293 %V 48 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a11/ %G ru %F ZVMMF_2008_48_7_a11
N. Ya. Moiseev; I. Yu. Silant'eva. Arbitrary-order difference schemes for solving linear advection equations with constant coefficients by the Godunov method with antidiffusion. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1282-1293. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a11/
