@article{ZVMMF_2008_48_7_a1,
author = {S. K. Godunov and A. N. Malyshev},
title = {On a~special basis of approximate eigenvectors with local supports for an isolated narrow cluster of eigenvalues of a~symmetric tridiagonal matrix},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1156--1166},
year = {2008},
volume = {48},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a1/}
}
TY - JOUR AU - S. K. Godunov AU - A. N. Malyshev TI - On a special basis of approximate eigenvectors with local supports for an isolated narrow cluster of eigenvalues of a symmetric tridiagonal matrix JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 1156 EP - 1166 VL - 48 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a1/ LA - ru ID - ZVMMF_2008_48_7_a1 ER -
%0 Journal Article %A S. K. Godunov %A A. N. Malyshev %T On a special basis of approximate eigenvectors with local supports for an isolated narrow cluster of eigenvalues of a symmetric tridiagonal matrix %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 1156-1166 %V 48 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a1/ %G ru %F ZVMMF_2008_48_7_a1
S. K. Godunov; A. N. Malyshev. On a special basis of approximate eigenvectors with local supports for an isolated narrow cluster of eigenvalues of a symmetric tridiagonal matrix. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 7, pp. 1156-1166. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_7_a1/
[1] Uilkinson Dzh. Kh., Algebraicheskaya problema sobstvennykh znachenii, Nauka, M., 1970
[2] Godunov S. K., Kostin V. I., Mitnenko A. D., “Vychislenie sobstvennogo vektora simmetrichnoi trekhdiagonalnoi matritsy”, Sibirskii matem. zhurnal, 26:5 (1985), 71–85 | MR | Zbl
[3] Godunov S. K., “Problema garantirovannoi tochnosti v chislennykh metodakh lineinoi algebry”, Proc. Int. Congress Math., v. II, Berkeley, California, 1986, 1353–1361 | MR
[4] Godunov S. K., Antonov A. G., Kirilyuk O. P., Kostin V. I., Garantirovannaya tochnost resheniya sistem lineinykh uravnenii v evklidovykh prostranstvakh, Nauka, Novosibirsk, 1988 | MR
[5] Godunov S. K., Lektsii po sovremennym aspektam lineinoi algebry, Nauchn. kn., Novosibirsk, 2002
[6] Fernando K. V., “Computing an eigenvector of a tridiagonal matrix. Part I: Basic results”, SIAM J. Matrix Analys. Appl., 18 (1997), 1013–1034 | DOI | MR | Zbl
[7] Parlett B. N., Dhillon I. S., “Fernando's solution to Wilkinson's problem: An application of double factorization”, Linear Algebra Appl., 267 (1997), 247–279 | MR | Zbl
[8] Mitchenko A. D., Algoritmy ischerpyvaniya trekhdiagonalnykh simmetricheskikh i dvukhdiagonalnykh matrits, Preprint No 59, In-t matem. SO AN SSSR, Novosibirsk, 1984
[9] Dhillon I. S., Parlett B. N., “Orthogonal eigenvectors and relative gaps”, SIAM J. Matrix Analys. Applic., 25:3 (2004), 858–899 | DOI | MR | Zbl
[10] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[11] Dhillon I. S., Parlett B. N., Vömel C., “Glued matrices and the MRRR algorithm”, SIAM J. Sci. Comput., 27:2 (2005), 496–510 | DOI | MR | Zbl
[12] Parlett B. N., “Invariant subspaces for tightly clustered eigenvalues of tridiagonals”, BIT, 36:3 (1996), 542–562 | DOI | MR | Zbl
[13] Malyshev A. H., Vvedenie v vychislitelnuyu lineinuyu algebru, Nauka, Novosibirsk, 1991
[14] Gu M., Eisenstat S. C., “Efficient algorithms for computing a strong rank-revealing QR factorization”, SIAM J. Sci. Comput., 17:4 (1996), 848–869 | DOI | MR | Zbl
[15] Higham N., Accuracy and stability of numerical algorithms, 2nd ed., SIAM, 2002 | MR