Nonlocal overdetermined boundary value problem for stationary Navier–Stokes equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 1056-1061 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A stationary system of Stokes and Navier–Stokes equations describing the flow of a homogeneous incompressible fluid in a bounded domain is considered. The vector of the flow velocity and a finite number of nonlocal conditions are defined at a part of the domain boundary. It is proved that, in the linear case, the problem has at least one stable solution. In the nonlinear case, the local solvability of the problem is proved.
@article{ZVMMF_2008_48_6_a9,
     author = {A. A. Illarionov},
     title = {Nonlocal overdetermined boundary value problem for stationary {Navier{\textendash}Stokes} equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1056--1061},
     year = {2008},
     volume = {48},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a9/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - Nonlocal overdetermined boundary value problem for stationary Navier–Stokes equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1056
EP  - 1061
VL  - 48
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a9/
LA  - ru
ID  - ZVMMF_2008_48_6_a9
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T Nonlocal overdetermined boundary value problem for stationary Navier–Stokes equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1056-1061
%V 48
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a9/
%G ru
%F ZVMMF_2008_48_6_a9
A. A. Illarionov. Nonlocal overdetermined boundary value problem for stationary Navier–Stokes equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 1056-1061. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a9/

[1] Fursikov A. B., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchn. kniga, Novosibirsk, 1999

[2] Illarionov A. A., “Nelokalnaya kraevaya zadacha s pereopredeleniem dlya ellipticheskogo uravneniya”, Sibirskii zhurnal industr. matem., 10:2 (2007), 64–69 | MR

[3] Fabre C., “Uniqueness results for Stokes equations and their consequences in lenear and nonlinear control problems”, ESIAM: Control, Optimization and Calculation of Variations, 1 (1996), 267–302 http://www.emath.gr/coc | DOI | MR | Zbl

[4] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[5] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[6] Fursikov A. B., Emanulov O. Yu., “Lokalnaya tochnaya upravlyaemost uravnenii Bussineska”, Vestn. Ros. un-ta Druzhby narodov. Ser. Matem., 3:1 (1996), 177–194 | Zbl

[7] Fursikov A. V., Immanuilov O. Yu., “Local exact boundary controllability of the Boussinesq equation”, SIAM J. Control Optimizat., 36:2 (1998), 391–421 | DOI | MR | Zbl