Grid approximation of a parabolic convection-diffusion equation on a priori adapted grids: $\varepsilon$-uniformly convergent schemes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 1014-1033 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The boundary value problem for a singularly perturbed parabolic convection-diffusion equation is considered. A finite difference scheme on a priori (sequentially) adapted grids is constructed and its convergence is examined. The construction of the scheme on a priori adapted grids is based on a majorant of the singular component of the grid solution that makes it possible to a priori find a subdomain in which the grid solution should be further refined given the perturbation parameter $\varepsilon$, the size of the uniform mesh in $x$, the desired accuracy of the grid solution, and the prescribed number of iterations $K$ used to refine the solution. In the subdomains where the solution is refined, the grid problems are solved on uniform grids. The error of the solution thus constructed weakly depends on $\varepsilon$. The scheme converges almost $\varepsilon$-uniformly; namely, it converges under the condition $N^{-1}=o(\varepsilon^\nu)$, where $\nu=\nu(K)$ can be chosen arbitrarily small when $K$ is sufficiently large. If a piecewise uniform grid is used instead of a uniform one at the final $K$ th iteration, the difference scheme converges $\varepsilon$-uniformly. For this piecewise uniform grid, the ratio of the mesh sizes in $x$ on the parts of the mesh with a constant size (outside the boundary layer and inside it) is considerably less than that for the known $\varepsilon$-uniformly convergent schemes on piecewise uniform grids.
@article{ZVMMF_2008_48_6_a7,
     author = {G. I. Shishkin},
     title = {Grid approximation of a~parabolic convection-diffusion equation on a~priori adapted grids: $\varepsilon$-uniformly convergent schemes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1014--1033},
     year = {2008},
     volume = {48},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a7/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Grid approximation of a parabolic convection-diffusion equation on a priori adapted grids: $\varepsilon$-uniformly convergent schemes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1014
EP  - 1033
VL  - 48
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a7/
LA  - ru
ID  - ZVMMF_2008_48_6_a7
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Grid approximation of a parabolic convection-diffusion equation on a priori adapted grids: $\varepsilon$-uniformly convergent schemes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1014-1033
%V 48
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a7/
%G ru
%F ZVMMF_2008_48_6_a7
G. I. Shishkin. Grid approximation of a parabolic convection-diffusion equation on a priori adapted grids: $\varepsilon$-uniformly convergent schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 1014-1033. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a7/

[1] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[2] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992

[3] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scient, Singapore, 1996 | MR

[4] Farrell P. A., Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust computational tehcniques for boundary layers, CRC Press, Boca Raton, 2000 | MR | Zbl

[5] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convectiondiffusion and flow problems, Springer, Heidelberg, 1996 | MR

[6] Liseikin V. D., Grid generation methods, Springer, Berlin, 1999 | MR | Zbl

[7] Hemker P. W., Shishkin G. I., Shishkina L. P., “Novel defect-correction high-order, in space and time, accurate schemes for parabolic singularly perturbed convection-diffusion problems”, Comput. Meth. Appl. Math., 3:3 (2003), 387–404 | MR | Zbl

[8] Shishkin G. I., “Robust novel high-order accurate numerical methods lor singularly perturbed convection-diffusion problems”, Math. Modelling and Analys., 10:4 (2005), 393–412 | MR | Zbl

[9] Shishkin G. I., “Aposteriorno adaptiruemye (po gradientu resheniya) setki v approksimatsii singulyarno vozmuschennykh uravnenii konvektsii-diffuzii”, Vychisl. tekhnologii, 6:1–2 (2001), 72–87 | MR | Zbl

[10] Shishkin G. I., “Approksimatsiya singulyarno vozmuschennykh uravnenii reaktsii-diffuzii na adaptivnykh setkakh”, Matem. modelirovanie, 13:3 (2001), 103–118 | MR | Zbl

[11] Shishkin G. I., “Ispolzovanie reshenii na vlozhennykh setkakh pri approksimatsii singulyarno vozmuschennogo parabolicheskogo uravneniya konvektsii-diffuzii na adaptiruyuschikhsya setkakh”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1617–1637 | MR

[12] Hemker P. W., Shishkin G. I., Shishkina L. P., “A class of singularly perturbed convection-diffusion problems with a moving interior layer. A posteriori adaptive mesh technique”, Comput. Meth. Appl. Math., 4:1 (2004), 105–127 | MR | Zbl

[13] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[14] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[15] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[16] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[17] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973 | MR | Zbl

[18] Hemker P. W., Shishkin G. I., Shishikina L. P., “$\varepsilon$-uniform schemes with high-order time-accuracy for parabolic singular perturbation problems”, IMA J. Numer. Analys., 20:1 (2000), 99–121 | DOI | MR | Zbl