Nonlinear eigenvalue problem for second-order Hamiltonian systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 999-1002

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonlinear self-adjoint eigenvalue problem for a Hamiltonian system of two ordinary differential equations is examined under the assumption that the matrix of the system is a monotone function of the spectral parameter. Certain properties of eigenvalues that were previously established by the authors for Hamitonian systems of arbitrary order are now worked out in detail and made more precise for the above system. In particular, a single second-order ordinary differential equation is analyzed.
@article{ZVMMF_2008_48_6_a5,
     author = {A. A. Abramov and V. I. Ul'yanova and L. F. Yukhno},
     title = {Nonlinear eigenvalue problem for second-order {Hamiltonian} systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {999--1002},
     publisher = {mathdoc},
     volume = {48},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a5/}
}
TY  - JOUR
AU  - A. A. Abramov
AU  - V. I. Ul'yanova
AU  - L. F. Yukhno
TI  - Nonlinear eigenvalue problem for second-order Hamiltonian systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 999
EP  - 1002
VL  - 48
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a5/
LA  - ru
ID  - ZVMMF_2008_48_6_a5
ER  - 
%0 Journal Article
%A A. A. Abramov
%A V. I. Ul'yanova
%A L. F. Yukhno
%T Nonlinear eigenvalue problem for second-order Hamiltonian systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 999-1002
%V 48
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a5/
%G ru
%F ZVMMF_2008_48_6_a5
A. A. Abramov; V. I. Ul'yanova; L. F. Yukhno. Nonlinear eigenvalue problem for second-order Hamiltonian systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 999-1002. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a5/