@article{ZVMMF_2008_48_6_a4,
author = {A. V. Lotov and A. I. Pospelov},
title = {The modified method of refined bounds for polyhedral approximation of convex polytopes},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {990--998},
year = {2008},
volume = {48},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a4/}
}
TY - JOUR AU - A. V. Lotov AU - A. I. Pospelov TI - The modified method of refined bounds for polyhedral approximation of convex polytopes JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 990 EP - 998 VL - 48 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a4/ LA - ru ID - ZVMMF_2008_48_6_a4 ER -
%0 Journal Article %A A. V. Lotov %A A. I. Pospelov %T The modified method of refined bounds for polyhedral approximation of convex polytopes %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 990-998 %V 48 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a4/ %G ru %F ZVMMF_2008_48_6_a4
A. V. Lotov; A. I. Pospelov. The modified method of refined bounds for polyhedral approximation of convex polytopes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 990-998. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a4/
[1] Chernikov S. N., Lineinye neravenstva, Nauka, M., 1968 | MR | Zbl
[2] Lotov A. B., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997
[3] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. Approximation and visualization of Pareto frontier, Kluwer Acad. Publ., Boston, 2004 | MR | Zbl
[4] Lotov A. V., Bourmistrova L. V., Efremov R. V. et al., “Experience of model integration and Pareto frontier visualization in the search for preferable water quality strategies”, Environmental Modelling and Software, 20:2 (2005), 243–260 | DOI | MR
[5] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR
[6] Efremov R., Kamenev G., “Polyhedral approximation of smooth convex bodies with optimal number of vertices and facets at once”, Proc. Internat. Congress Math. (Madrid, August 22–30), Madrid, 2006, 496
[7] Kamenev G. K., “Algoritm sblizhayuschikhsya mnogogrannikov”, Zh. vychisl. matem. i matem. fiz., 36:4 (1996), 134–147 | MR | Zbl
[8] Burmistrova L. V., “Eksperimentalnyi analiz novogo adaptivnogo metoda poliedralnoi approksimatsii mnogomernykh vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 43:3 (2003), 328–346 | MR | Zbl
[9] Kamenev G. K., “Samodvoistvennye adaptivnye algoritmy poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 43:8 (2003), 1123–1137 | MR | Zbl
[10] Chernykh O. L., “Postroenie vypukloi obolochki konechnogo mnozhestva tochek na osnove triangulyatsii”, Zh. vychisl. matem. i matem. fiz., 31:8 (1991), 1231–1242 | MR
[11] Vasilev F. P., Ivanitskii A. Yu., Lineinoe programmirovanie, Faktorial Press, M., 2003 | MR
[12] Burova N. K., Stanevichene L. I., Stanevichus A.-I. A., Shklyar P. E., Sistema lineinogo programmirovaniya, VTs AN SSSR, M., 1981
[13] Malkov U. Kh., “Obzor putei povysheniya effektivnosti multiplikativnogo algoritma simpleks-metoda”, Matem. metody resheniya ekonom. zadach, Nauka, M., 1977 | MR
[14] Burmistrova L. V., Efremov R. V., Lotov A. B., “Metodika vizualnoi podderzhki prinyatiya reshenii i ee primenenie v sistemakh upravleniya vodnymi resursami”, Izv. RAN. Teoriya i sistemy upravleniya, 2002, no. 5, 89–100