The modified method of refined bounds for polyhedral approximation of convex polytopes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 990-998 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The modified method of refined bounds is proposed and experimentally studied. This method is designed to iteratively approximate convex multidimensional polytopes with a large number of vertices. Approximation is realized by a sequence of convex polytopes with a relatively small but gradually increasing number of vertices. The results of an experimental comparison between the modified and the original methods of refined bounds are presented. The latter was designed for the polyhedral approximation of multidimensional convex compact bodies of general type.
@article{ZVMMF_2008_48_6_a4,
     author = {A. V. Lotov and A. I. Pospelov},
     title = {The modified method of refined bounds for polyhedral approximation of convex polytopes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {990--998},
     year = {2008},
     volume = {48},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a4/}
}
TY  - JOUR
AU  - A. V. Lotov
AU  - A. I. Pospelov
TI  - The modified method of refined bounds for polyhedral approximation of convex polytopes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 990
EP  - 998
VL  - 48
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a4/
LA  - ru
ID  - ZVMMF_2008_48_6_a4
ER  - 
%0 Journal Article
%A A. V. Lotov
%A A. I. Pospelov
%T The modified method of refined bounds for polyhedral approximation of convex polytopes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 990-998
%V 48
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a4/
%G ru
%F ZVMMF_2008_48_6_a4
A. V. Lotov; A. I. Pospelov. The modified method of refined bounds for polyhedral approximation of convex polytopes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 990-998. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a4/

[1] Chernikov S. N., Lineinye neravenstva, Nauka, M., 1968 | MR | Zbl

[2] Lotov A. B., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997

[3] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. Approximation and visualization of Pareto frontier, Kluwer Acad. Publ., Boston, 2004 | MR | Zbl

[4] Lotov A. V., Bourmistrova L. V., Efremov R. V. et al., “Experience of model integration and Pareto frontier visualization in the search for preferable water quality strategies”, Environmental Modelling and Software, 20:2 (2005), 243–260 | DOI | MR

[5] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR

[6] Efremov R., Kamenev G., “Polyhedral approximation of smooth convex bodies with optimal number of vertices and facets at once”, Proc. Internat. Congress Math. (Madrid, August 22–30), Madrid, 2006, 496

[7] Kamenev G. K., “Algoritm sblizhayuschikhsya mnogogrannikov”, Zh. vychisl. matem. i matem. fiz., 36:4 (1996), 134–147 | MR | Zbl

[8] Burmistrova L. V., “Eksperimentalnyi analiz novogo adaptivnogo metoda poliedralnoi approksimatsii mnogomernykh vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 43:3 (2003), 328–346 | MR | Zbl

[9] Kamenev G. K., “Samodvoistvennye adaptivnye algoritmy poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 43:8 (2003), 1123–1137 | MR | Zbl

[10] Chernykh O. L., “Postroenie vypukloi obolochki konechnogo mnozhestva tochek na osnove triangulyatsii”, Zh. vychisl. matem. i matem. fiz., 31:8 (1991), 1231–1242 | MR

[11] Vasilev F. P., Ivanitskii A. Yu., Lineinoe programmirovanie, Faktorial Press, M., 2003 | MR

[12] Burova N. K., Stanevichene L. I., Stanevichus A.-I. A., Shklyar P. E., Sistema lineinogo programmirovaniya, VTs AN SSSR, M., 1981

[13] Malkov U. Kh., “Obzor putei povysheniya effektivnosti multiplikativnogo algoritma simpleks-metoda”, Matem. metody resheniya ekonom. zadach, Nauka, M., 1977 | MR

[14] Burmistrova L. V., Efremov R. V., Lotov A. B., “Metodika vizualnoi podderzhki prinyatiya reshenii i ee primenenie v sistemakh upravleniya vodnymi resursami”, Izv. RAN. Teoriya i sistemy upravleniya, 2002, no. 5, 89–100