One-velocity model of a heterogeneous medium with a hyperbolic adiabatic kernel
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 1111-1125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The one-velocity model equations for a heterogeneous medium are presented that take into account the internal forces of interfractional interactions and heat and mass exchange. The shock adiabat obtained for the mixture agrees with the one-velocity model equations. For one-dimensional unsteady adiabatic flows, the characteristic equations are found and relations along characteristic directions are determined. It is shown that the model equations with allowance for interfractional interaction forces are hyperbolic. Several finite-difference and finite-volume schemes designed for integrating the model equations are discussed.
@article{ZVMMF_2008_48_6_a13,
     author = {V. S. Surov},
     title = {One-velocity model of a~heterogeneous medium with a~hyperbolic adiabatic kernel},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1111--1125},
     year = {2008},
     volume = {48},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a13/}
}
TY  - JOUR
AU  - V. S. Surov
TI  - One-velocity model of a heterogeneous medium with a hyperbolic adiabatic kernel
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1111
EP  - 1125
VL  - 48
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a13/
LA  - ru
ID  - ZVMMF_2008_48_6_a13
ER  - 
%0 Journal Article
%A V. S. Surov
%T One-velocity model of a heterogeneous medium with a hyperbolic adiabatic kernel
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1111-1125
%V 48
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a13/
%G ru
%F ZVMMF_2008_48_6_a13
V. S. Surov. One-velocity model of a heterogeneous medium with a hyperbolic adiabatic kernel. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 1111-1125. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a13/

[1] Lyakhov G. M., “Udarnye volny v mnogokomponentnykh sredakh”, Izv. AN SSSR. Mekhan. i mashinostr., 1959, no. 1, 46–49 | Zbl

[2] Rakhmatulin Kh. A., “O rasprostranenii voln v mnogokomponentnykh sredakh”, Prikl. matem. i mekhan., 33:4 (1969), 598–601

[3] Fisenko V. V., Szhimaemost teplonositelya i effektivnost raboty konturov tsirkulyatsii YaEU, Energoatomizdat, M., 1987

[4] Nigmatulin P. I., Dinamika mnogofaznykh sred, Nauka, M., 1987

[5] Surov B. C., “Odnoskorostnaya model geterogennoi sredy”, Matem. modelirovanie, 13:10 (2001), 27–42 | MR | Zbl

[6] Kuropatenko V. F., “Model mnogokomponentnoi sredy”, Dokl. RAN, 403:6 (2005), 761–763

[7] Godunov S. K., “Galileevo-invariantnaya i termodinamicheski soglasovannaya model sostavnoi izotropnoi sredy”, Prikl. mekhan. i tekhn. fiz., 45:5 (2004), 3–12 | MR | Zbl

[8] Surov B. C., “Udarnaya adiabata odnoskorostnoi geterogennoi sredy”, Inzh.-fiz. zh., 79:5 (2006), 46–52

[9] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[10] Surov B. C., “O nekotorykh avtomodelnykh zadachakh techeniya odnoskorostnoi geterogennoi sredy”, Inzh.-fiz. zh., 80:6 (2007), 164–172