Newton's method as applied to the Riemann problem for media with general equations of state
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 1102-1110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach based on Newton's method is proposed for solving the Riemann problem for media with normal equations of state. The Riemann integrals are evaluated using a cubic approximation of an isentropic curve that is superior to the Simpson method in terms of accuracy, convergence rate, and efficiency. The potentials of the approach are demonstrated by solving problems for media obeying the Mie–Grüneisen equation of state. The algebraic equation of the isentropic curve and some exact solutions for configurations with rarefaction waves are explicitly given.
@article{ZVMMF_2008_48_6_a12,
     author = {N. Ya. Moiseev and T. A. Mukhamadieva},
     title = {Newton's method as applied to the {Riemann} problem for media with general equations of state},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1102--1110},
     year = {2008},
     volume = {48},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a12/}
}
TY  - JOUR
AU  - N. Ya. Moiseev
AU  - T. A. Mukhamadieva
TI  - Newton's method as applied to the Riemann problem for media with general equations of state
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1102
EP  - 1110
VL  - 48
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a12/
LA  - ru
ID  - ZVMMF_2008_48_6_a12
ER  - 
%0 Journal Article
%A N. Ya. Moiseev
%A T. A. Mukhamadieva
%T Newton's method as applied to the Riemann problem for media with general equations of state
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1102-1110
%V 48
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a12/
%G ru
%F ZVMMF_2008_48_6_a12
N. Ya. Moiseev; T. A. Mukhamadieva. Newton's method as applied to the Riemann problem for media with general equations of state. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 1102-1110. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a12/

[1] Rozhdestvenskii B. L., Yanenko H. H., Sistemy kvazilineinykh uravnenii, Nauka, M., 1968

[2] Ovsyannikov L. V., Lektsii po osnovam gazovoi dinamiki, Nauka, M., 1981 | MR | Zbl

[3] Godunov S. K., Zabrodin A. B., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[4] Aladykin G. B., Godunov S. K., Kireeva I. L., Pliner L. A., Reshenie odnomernykh zadach gazovoi dinamiki v podvizhnykh setkakh, Nauka, M., 1970 | MR

[5] Shustov Yu. M., “Raschet raspada razryva dlya proizvolnykh uravnenii sostoyaniya”, Chisl. metody mekhan. sploshnoi sredy. Novosibirsk: VTs SO AN SSSR, 9:4 (1978), 131–138

[6] Kuropatenko V. F., Kovalenko G. V., Kuznetsov V. I. i dr., “Kompleks programm “VOLNA” i neodnorodnyi raznostnyi metod dlya rascheta neustanovivshikhsya dvizhenii szhimaemykh sploshnykh sred”, VANT. Ser. Metodiki i programmy chisl. resheniya zadach matem. fiz., 1989, no. 2, 19–25

[7] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[8] Prokopov G. P., “Raschet raspada razryva dlya poristykh sred i sploshnykh sred s dvuchlennymi uravneniyami sostoyaniya”, VANT. Ser. Metodiki i programmy chisl. resheniya zadach matem. fiz., 1982, no. 2(10), 32–40

[9] Prokopov G. P., O priblizhennykh realizatsiyakh metoda Godunova, Preprint No 15, IPM matem. RAN, M., 2007

[10] Kobzeva T. A., Moiseev N. Ya., “Metod neopredelennykh koeffitsientov dlya resheniya zadachi o raspade proizvolnogo razryva”, VANT. Ser. Metodiki i programmy chisl. resheniya zadach matem. fiz., 2003, no. 1, 3–9

[11] Kollatts L., Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969

[12] Weyl H., “Shock waves in arbitrary fluids”, Communs Pure and Appl. Math., 2 (1949), 103–122 | DOI | MR | Zbl

[13] Zababakhin E. I., Nekotorye voprosy gazodinamiki vzryva, RFYaTs-VNIITF, Snezhinsk, 1997

[14] Kobylkin I. F., Selivanov V. V., Solovev B. C., Sysoev H. H., Udarnye i detonatsionnye volny. Metody issledovaniya, Fizmatlit, M., 2004

[15] Dvait G. B., Tablitsy integralov i drugie matematicheskie formuly, Nauka, M., 1978

[16] Bronshtein I. H., Semendyaev K. A., Spravochnik po matematike dlya inzhenerov i uchaschikhsya vtuzov, Nauka, M., 1986