Error estimates for kernel and projection methods of recovering the orientation distribution function on $\mathrm{SO}(3)$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 1087-1101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The orientation density function is recovered from a sample of orientations on the rotation group $\mathrm{SO}(3)$ of the three-dimensional Euclidean space. Sufficient conditions for the consistency of kernel and projection estimates in $L_2$, $L_1$, and $C$ are considered. Numerical results concerning the error estimation of projection methods over the basis of generalized spherical functions are given for normal distributions on $\mathrm{SO}(3)$.
@article{ZVMMF_2008_48_6_a11,
     author = {K. P. Aganin and T. I. Savyolova},
     title = {Error estimates for kernel and projection methods of recovering the orientation distribution function on $\mathrm{SO}(3)$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1087--1101},
     year = {2008},
     volume = {48},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a11/}
}
TY  - JOUR
AU  - K. P. Aganin
AU  - T. I. Savyolova
TI  - Error estimates for kernel and projection methods of recovering the orientation distribution function on $\mathrm{SO}(3)$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1087
EP  - 1101
VL  - 48
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a11/
LA  - ru
ID  - ZVMMF_2008_48_6_a11
ER  - 
%0 Journal Article
%A K. P. Aganin
%A T. I. Savyolova
%T Error estimates for kernel and projection methods of recovering the orientation distribution function on $\mathrm{SO}(3)$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1087-1101
%V 48
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a11/
%G ru
%F ZVMMF_2008_48_6_a11
K. P. Aganin; T. I. Savyolova. Error estimates for kernel and projection methods of recovering the orientation distribution function on $\mathrm{SO}(3)$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 1087-1101. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a11/

[1] Bunge H. J., Texture analysis in materials science. Mathematical methods, Butterworths, London, 1982

[2] Savelova T. I., Novye metody issledovaniya tekstury polikristallov, Metallurgiya, M., 1985, 10–30 pp.

[3] Guilmeau E., Henrist C., Siizuku T. S. et al., “Texture of Alumina by neutron diffraction and SEM-EBSD”, Materials Science Forum. ICOTOM 14, 2005, 1395–1400

[4] Boogaart K. G., “Statistical errors of texture entities based on EBSD orientation measurments”, Materials Science Forum. ICOTOM 14, 2005, 179–184

[5] Bozzolo N., Gerspach F., Sawina G., Wagner F., “Accuracy of orientation distribution function determination based on EBSD data. A case study of a recrystallized low alloyed Zr sheet”, J. Microscopy, 227 (2007), 275–283 | DOI | MR

[6] Borovkov M. V., Savelova T. I., Serebryanyi V. N., “Issledovanie statisticheskikh oshibok rentgenovskogo teksturnogo eksperimenta po izmereniyu polyusnykh figur s ispolzovaniem metoda Monte-Karlo”, Zavodskaya laboratoriya, 71:12 (2005), 19–24

[7] Savelova T. I., Korenkova E. F., “Otsenka tochnosti nekotorykh statisticheskikh kharakteristik v teksturnom analize”, Zavodskaya laboratoriya, 72:12 (2006), 29–34

[8] Savelova T. I., Sypchenko M. V., “Vychislenie funktsii raspredeleniya orientatsii po naboru otdelnykh orientirovok na gruppe vraschenii $\mathrm{SO}(3)$”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 1015–1028 | MR

[9] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavleniya grupp, Nauka, M., 1965 | MR

[10] Borovkov M. V., Savelova T. I., “Vychislenie normalnykh raspredelenii na gruppe vraschenii metodom Monte-Karlo”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 112–128 | MR | Zbl

[11] Borovkov M., Savelova T., “The computational approaches to calculate normal distributions on the rotation group”, J. Appl. Crystallogr., 40 (2007), 449–455 | DOI

[12] Devroi L., Derfi L., Neparametricheskoe otsenivanie plotnosti, $L_1$-podkhod, Mir, M., 1988 | MR

[13] Schachen H., “A Unified view of methods to resolve the inverse problem of texture goniometry”, Textures and Microstructures, 25:2–4 (1996), 171–181

[14] Schachen H., Boogaart K. G., “Spherical harmonics in texture analysis”, Tectonophysics, 370 (2003), 253–268 | DOI

[15] Savelova T. I., “Funktsiya raspredeleniya zeren po orientatsiyam i ikh gaussovskie priblizheniya”, Zavodskaya laboratoriya, 50:5 (1984), 48–52

[16] Nikolayev D. I., Savyolova T. I., “Normal distribution on the rotation group $\mathrm{SO}(3)$”, Textures and Microstructures, 29 (1997), 201–233 | DOI

[17] Schachen H., ““Normal” orientation distribution”, Textures and Microstructures, 19 (1992), 197–202 | DOI

[18] Borovkov A. A., Matematicheskaya statistika, Nauka, M., 1984 | MR

[19] Chentsov H. H., Statisticheskie reshayuschie pravila i optimalnye vyvody, Nauka, M., 1972 | Zbl

[20] Kryanev A. B.,Lukin G. V., Matematicheskie metody obrabotki neopredelennykh dannykh, Fizmatlit, M., 2003

[21] Veroyatnost i matematicheskaya statistika, Entsiklopediya, M., 1999, 910 pp.

[22] info@hkltechnology.com http://www.hkltechnology.com