Propagation of perturbations in a two-layer stratified fluid with an interface excited by moving sources
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 1062-1086 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Propagation of small perturbations in a two-layer inviscid stratified fluid is studied. It is assumed that the higher density fluid occupies the lower unbounded half-space, while the lower density fluid occupies the upper unbounded half-space. The source of the excitation is a plane wave traveling along the interface of the fluids. An explicit analytical solution to the problem is constructed, and its existence and uniqueness are proved. The long-time wave pattern developing in the fluids is analyzed.
@article{ZVMMF_2008_48_6_a10,
     author = {L. V. Perova},
     title = {Propagation of perturbations in a~two-layer stratified fluid with an interface excited by moving sources},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1062--1086},
     year = {2008},
     volume = {48},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a10/}
}
TY  - JOUR
AU  - L. V. Perova
TI  - Propagation of perturbations in a two-layer stratified fluid with an interface excited by moving sources
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 1062
EP  - 1086
VL  - 48
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a10/
LA  - ru
ID  - ZVMMF_2008_48_6_a10
ER  - 
%0 Journal Article
%A L. V. Perova
%T Propagation of perturbations in a two-layer stratified fluid with an interface excited by moving sources
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 1062-1086
%V 48
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a10/
%G ru
%F ZVMMF_2008_48_6_a10
L. V. Perova. Propagation of perturbations in a two-layer stratified fluid with an interface excited by moving sources. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 1062-1086. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a10/

[1] Gabov S. A., Sveshnikov A. G., Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990 | MR

[2] Gabov S. A., Novye zadachi matematicheskoi teorii voln, Nauka, M., 1998 | Zbl

[3] Perova L. V., “O kolebaniyakh polubeskonechnoi stratifitsirovannoi zhidkosti pri vozbuzhdenii ee svobodnoi poverkhnosti dvizhuschimisya istochnikami”, Zh. vychisl. matem. i matem. fiz., 45:6 (2005), 1107–1124 | MR | Zbl

[4] Perova L. V., “O kolebaniyakh stratifitsirovannoi vraschayuscheisya zhidkosti pri vozbuzhdenii ee svobodnoi poverkhnosti dvizhuschimisya istochnikami”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 903–922 | MR

[5] Perova L. V., Pletner Yu. D., Sveshnikov A. G., “O kolebaniyakh v stratifitsirovannoi i vraschayuscheisya zhidkosti, vozbuzhdaemykh ploskoi beguschei po dnu volnoi”, Zh. vychisl. matem. i matem. fiz., 40:1 (2000), 136–143 | MR | Zbl

[6] Alshin A. B., Perova L. V., “O kolebaniyakh stratifitsirovannoi vraschayuscheisya zhidkosti, vozbuzhdaemykh volnoi, beguschei po naklonnomu dnu”, Zh. vychisl. matem. i matem. fiz., 40:3 (2000), 473–482 | MR

[7] Sveshnikov A. G., Tikhonov A. N., Teoriya funktsii kompleksnoi peremennoi, Nauka, M., 1991 | MR

[8] Pletner Yu. D., “O kolebaniyakh ploskogo diska na granitse razdela dvukh stratifitsirovannykh zhidkostei”, Zh. vychisl. matem. i matem. fiz., 30:5 (1990), 736–750 | MR | Zbl

[9] Fedoryuk M. F., Asimptotika. Integraly i ryady, Nauka, M., 1987 | MR

[10] Gabov S. A., Sveshnikov A. G., Zadachi dinamiki stratifitsirovannykh zhidkostei, Nauka, M., 1986 | MR