Propagation of perturbations in a two-layer stratified fluid with an interface excited by moving sources
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 1062-1086
Voir la notice de l'article provenant de la source Math-Net.Ru
Propagation of small perturbations in a two-layer inviscid stratified fluid is studied. It is assumed that the higher density fluid occupies the lower unbounded half-space, while the lower density fluid occupies the upper unbounded half-space. The source of the excitation is a plane wave traveling along the interface of the fluids. An explicit analytical solution to the problem is constructed, and its existence and uniqueness are proved. The long-time wave pattern developing in the fluids is analyzed.
@article{ZVMMF_2008_48_6_a10,
author = {L. V. Perova},
title = {Propagation of perturbations in a~two-layer stratified fluid with an interface excited by moving sources},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1062--1086},
publisher = {mathdoc},
volume = {48},
number = {6},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a10/}
}
TY - JOUR AU - L. V. Perova TI - Propagation of perturbations in a two-layer stratified fluid with an interface excited by moving sources JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 1062 EP - 1086 VL - 48 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a10/ LA - ru ID - ZVMMF_2008_48_6_a10 ER -
%0 Journal Article %A L. V. Perova %T Propagation of perturbations in a two-layer stratified fluid with an interface excited by moving sources %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 1062-1086 %V 48 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a10/ %G ru %F ZVMMF_2008_48_6_a10
L. V. Perova. Propagation of perturbations in a two-layer stratified fluid with an interface excited by moving sources. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 1062-1086. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a10/