@article{ZVMMF_2008_48_6_a1,
author = {A. S. Bratus' and E. S. Chumerina},
title = {Optimal control synthesis in therapy of solid tumor growth},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {946--966},
year = {2008},
volume = {48},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a1/}
}
TY - JOUR AU - A. S. Bratus' AU - E. S. Chumerina TI - Optimal control synthesis in therapy of solid tumor growth JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 946 EP - 966 VL - 48 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a1/ LA - ru ID - ZVMMF_2008_48_6_a1 ER -
A. S. Bratus'; E. S. Chumerina. Optimal control synthesis in therapy of solid tumor growth. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 6, pp. 946-966. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_6_a1/
[1] Aranjo R. P., Mcelwain D. L., “A history of the study of solid tumour growth: The contribution of mathematical modelling”, Bull. Math. Biol., 66 (2004), 1039–1091 | DOI | MR
[2] Byrne H. M., “Using mathematics study solid tumour growth”, Proc. 9the General Meetings of European Women in Math., 1999, 81–107 | MR
[3] Byrne H. M., “A weakly nonlinear analysis of a model of avascular solid tumour growth”, J. Math. Biol., 39 (1999), 151–181 | DOI | MR
[4] Matzavinos A., Chaplain M., Kuznetsov V., “Mathematical modelling of the spatio-temporal response of cytotoxic $T$-lymphocytes to a solid tumour”, Math. Medicine and Biology, 21 (2004), 1–34 | DOI | Zbl
[5] Guiot C., Degiorgis P. G., Delsanto P. P. et al., “Does tumour growth follow a “universal low””, J. Theor. Biol., 225 (2003), 147–151 | DOI | MR
[6] Murray J. D., Mathematical biology, v. II, Spatial models and biomedical applications, Springer, Berlin, 2003 | MR
[7] Kolmogorov A. H., Fomin C. B., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968 | MR | Zbl
[8] Costa M. I., Boldini J. L., Bassanezi R. C., “Drug kinetics and drug resistance in optimal chemotherapy”, Math. Biosciences, 125 (1995), 191–209 | DOI | Zbl
[9] Costa M. I., Boldini J. L., Bassanezi R. C., “Chemotherapeutic treatments involving drug resistance and level of normal cells as a criterion of toxicity”, Math. Biosciences, 125 (1995), 211–228 | DOI | Zbl
[10] Hofbauer J., Sigmund K., The theory of evolution and dynamical systems, Cambridge Univ. Press, New York, 1988 | MR | Zbl
[11] Fleming W., Rishel R., Deterministic and stochastic optimal control, Springer, Berlin, 1975 | MR
[12] Chernousko F. A., “Avtomodelnye resheniya uravneniya Bellmana dlya zadach optimalnoi korrektsii sluchainykh vozmuschenii”, Prikl. matem. i mekhan., 35:2 (1971), 333–342 | MR
[13] Bratus A. C., Volosov K. A., “Tochnye resheniya uravneniya Gamiltona–Yakobi–Bellmana dlya zadach optimalnoi korrektsii s ogranichennym summarnym resursom upravleniya”, Prikl. matem. i mekhan., 68:4 (2004), 819–832 | MR | Zbl
[14] Kirschner D., Panetta J. C., “Modelling immunotherapy of the tumour-immune interaction”, J. Math. Biol., 37 (1998), 235–252 | DOI | Zbl
[15] Burden T. N., Ernstberger J., Fister K. R., “Optimal control applied to immunotherapy”, J. Discrete and Continuous Dynamical Systems, Ser. B, 4 (2004), 135–146 | MR | Zbl