Trapped modes in a cylindrical elastic waveguide with a damping gasket
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 863-881
Voir la notice de l'article provenant de la source Math-Net.Ru
An infinite cylindrical body containing a three-dimensional heavy rigid inclusion with a sharp edge is considered. Under certain constraints on the symmetry of the body, it is shown that any prescribed number of eigenvalues of the elasticity operator can be placed on an arbitrary real interval $(0,l)$ by choosing suitable physical properties of the inclusion. In the continuous spectrum, these points correspond to trapped modes, i.e., to exponentially decaying solutions to the homogeneous problem. The results can be used to design filters and dampers of elastic waves in a cylinder.
@article{ZVMMF_2008_48_5_a9,
author = {S. A. Nazarov},
title = {Trapped modes in a~cylindrical elastic waveguide with a~damping gasket},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {863--881},
publisher = {mathdoc},
volume = {48},
number = {5},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a9/}
}
TY - JOUR AU - S. A. Nazarov TI - Trapped modes in a cylindrical elastic waveguide with a damping gasket JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 863 EP - 881 VL - 48 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a9/ LA - ru ID - ZVMMF_2008_48_5_a9 ER -
S. A. Nazarov. Trapped modes in a cylindrical elastic waveguide with a damping gasket. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 863-881. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a9/