Trapped modes in a cylindrical elastic waveguide with a damping gasket
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 863-881

Voir la notice de l'article provenant de la source Math-Net.Ru

An infinite cylindrical body containing a three-dimensional heavy rigid inclusion with a sharp edge is considered. Under certain constraints on the symmetry of the body, it is shown that any prescribed number of eigenvalues of the elasticity operator can be placed on an arbitrary real interval $(0,l)$ by choosing suitable physical properties of the inclusion. In the continuous spectrum, these points correspond to trapped modes, i.e., to exponentially decaying solutions to the homogeneous problem. The results can be used to design filters and dampers of elastic waves in a cylinder.
@article{ZVMMF_2008_48_5_a9,
     author = {S. A. Nazarov},
     title = {Trapped modes in a~cylindrical elastic waveguide with a~damping gasket},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {863--881},
     publisher = {mathdoc},
     volume = {48},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a9/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Trapped modes in a cylindrical elastic waveguide with a damping gasket
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 863
EP  - 881
VL  - 48
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a9/
LA  - ru
ID  - ZVMMF_2008_48_5_a9
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Trapped modes in a cylindrical elastic waveguide with a damping gasket
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 863-881
%V 48
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a9/
%G ru
%F ZVMMF_2008_48_5_a9
S. A. Nazarov. Trapped modes in a cylindrical elastic waveguide with a damping gasket. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 863-881. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a9/