@article{ZVMMF_2008_48_5_a9,
author = {S. A. Nazarov},
title = {Trapped modes in a~cylindrical elastic waveguide with a~damping gasket},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {863--881},
year = {2008},
volume = {48},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a9/}
}
TY - JOUR AU - S. A. Nazarov TI - Trapped modes in a cylindrical elastic waveguide with a damping gasket JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 863 EP - 881 VL - 48 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a9/ LA - ru ID - ZVMMF_2008_48_5_a9 ER -
S. A. Nazarov. Trapped modes in a cylindrical elastic waveguide with a damping gasket. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 863-881. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a9/
[1] Ursell F., “Trapping modes in the theory of surface waves”, Proc. Cambridge Philos. Soc., 47 (1951), 347–358 | DOI | MR | Zbl
[2] Jones D. S., “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semiinfinite domains”, Proc. Cambridge Philos. Soc., 49 (1953), 668–684 | DOI | MR | Zbl
[3] Evans D. V., “Trapped acoustic modes”, IMA J. Appl. Math., 49 (1992), 45–60 | DOI | MR
[4] Bonnet-Bendhia A.-S., Starling F., “Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem”, Math. Meth. Appl. Sci., 77 (1994), 305–338 | DOI | MR
[5] Evans D. V., Levitin M., Vasil'ev D., “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl
[6] Roitberg I., Vassiliev D., Weidl T., “Edge resonance in an elastic semi-strip”, Quart. J. Appl. Math., 51:1 (1998), 1–13 | DOI | MR | Zbl
[7] Kamotskii I. V., Nazarov C. A., “Uprugie volny, lokalizovannye okolo periodicheskikh semeistv defektov”, Dokl. RAN, 368:6 (1999), 771–773 | MR | Zbl
[8] Kamotskii I. V., Nazarov S. A., “Anomalii Vuda i poverkhnostnye volny v zadachakh rasseyaniya na periodicheskoi granitse. 1, 2”, Matem. sb., 190:1 (1999), 109–138 | MR | Zbl
[9] Kamotskii I. V., Nazarov S. A., “Rasshirennaya matritsa rasseyaniya i eksponentsialno zatukhayuschie resheniya ellipticheskoi zadachi v tsilindricheskoi oblasti”, Zap. nauchn. seminarov peterburgskogo otd. Matem. in-ta RAN, 264, 2000, 66–82 | MR | Zbl
[10] Nazarov S. A., “Kriterii suschestvovaniya zatukhayuschikh reshenii v zadache o rezonatore s tsilindricheskim volnovodom”, Funkts. analiz i ego prilozh., 40:2 (2006), 20–32 | MR | Zbl
[11] Nazarov S. A., “Iskusstvennye kraevye usloviya dlya poiska poverkhnostnykh voln v zadache difraktsii na periodicheskoi granitse”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2265–2276 | MR
[12] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991
[13] Sanchez-Palencia E., “Asymptotic and spectral properties of a class of singular-stiff problems”, J. Math. Pures and Appl., 71 (1992), 379–406 | MR | Zbl
[14] Lobo M., Perez E., “High frequency vibrations in a stiff problem”, Math. Models Methods Appl. Sci., 7 (1977), 291–311 | DOI | MR
[15] Lobo M. H., Nazarov S. A., Perez M. E., “Asymptotically sharp uniform estimates in a scalar spectral stiffness problem”, Cr. Mecanique, 331 (2003), 325–330 | DOI | Zbl
[16] Lobo M. N., Nazarov C. A., Peres M. E., “Sobstvennye kolebaniya silno neodnorodnogo uprugogo tela. Asimptotika i ravnomernye otsenki ostatkov”, Dokl. RAN, 389:2 (2003), 173–176 | MR
[17] Lobo M., Nazarov S. A., Perez E., “Eigen-oscillations of contrasting non-homogeneous bodies: asymptotic and uniform estimates for eigenvalues”, IMA J. Appl. Math., 70 (2005), 419–458 | DOI | MR | Zbl
[18] Nazarov C. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchn. kniga, Novosibirsk, 2001
[19] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR
[20] Kamotskii I. V., Nazarov S. A., “O sobstvennykh funktsiyakh, lokalizovannykh okolo kromki tonkoi oblasti”, Probl. matem. analiza, 19, Nauchn. kniga, Novosibirsk, 1999, 105–148
[21] Nazarov S. A., “Localization effects for eigenfunctions near to the edge of a thin domain”, Math. Bohemica, 127:2 (2002), 283–292 | MR | Zbl
[22] Nazarov C. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR | Zbl
[23] Nazarov S. A., “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Probl. matem. analiza, 16, Izd-vo SPbGU, SPb., 1997, 167–192
[24] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR
[25] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. matem. ob-va, 16, 1963, 219–292
[26] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl
[27] Nazarov S. A., “Ob asimptotike spektra zadachi teorii uprugosti dlya tonkoi plastiny”, Sibirskii matem. zhurnal, 41:4 (2000), 895–912 | MR | Zbl
[28] Lekhnitskii S. G., Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977 | MR | Zbl
[29] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[30] Nazarov S. A., “Vesovye funktsii i invariantnye integraly”, Vychisl. mekhan. deformiruemogo tverdogo tela, Vyp. 1, 1990, 17–31
[31] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachricht., 76 (1977), 29–60 | DOI
[32] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachricht., 77 (1977), 25–82 | MR
[33] Duduchava R., Wendland W. L., “The Wiener–Hopf method for systems of pseudodifferential equations with an application to crack problems”, Integral Equat. Operat. Theory, 23:3 (1995), 294–335 | DOI | MR | Zbl
[34] Costabel M., Dauge M., “Crack singularities for general elliptic systems”, Math. Nachr., 235 (2002), 29–49 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[35] Arutyunyan N. Kh., Nazarov S. A., “Ob osobennostyakh funktsii napryazheniya v uglovykh tochkakh poperechnogo secheniya skruchivaemogo sterzhnya s tonkim usilivayuschim pokrytiem”, Prikl. matem. i mekhan., 47:1 (1983), 122–132 | MR
[36] Costabel M., Dauge M., “A singularly perturbed mixed boundary value problem”, Communs Part. Different. Equat., 21:11–12 (1996), 1919–1949 | MR | Zbl
[37] Nazarov S. A., “Treschina na styke anizotropnykh tel. Singulyarnosti uprugikh polei i kriterii razrusheniya pri kontakte beregov”, Prikl. matem. i mekhan., 69:3 (2005), 520–532 | MR | Zbl
[38] Nazarov S. A., “Ravnomernye otsenki ostatkov v asimptoticheskikh razlozheniyakh reshenii zadachi o sobstvennykh kolebaniyakh pezoelektricheskoi plastiny”, Probl. matem. analiza, 25, Nauchn. kniga, Novosibirsk, 2003, 99–188
[39] Gomez D., Lobo M., Nazarov S. A., Perez E., “Spectral stiff problems in domains surrounded by thin bands: Asymptotic and uniform estimates for eigenvalues”, J. Math. Pures and Appl., 85 (2006), 598–632 | MR | Zbl
[40] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122 | MR | Zbl