Trapped modes in a cylindrical elastic waveguide with a damping gasket
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 863-881 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An infinite cylindrical body containing a three-dimensional heavy rigid inclusion with a sharp edge is considered. Under certain constraints on the symmetry of the body, it is shown that any prescribed number of eigenvalues of the elasticity operator can be placed on an arbitrary real interval $(0,l)$ by choosing suitable physical properties of the inclusion. In the continuous spectrum, these points correspond to trapped modes, i.e., to exponentially decaying solutions to the homogeneous problem. The results can be used to design filters and dampers of elastic waves in a cylinder.
@article{ZVMMF_2008_48_5_a9,
     author = {S. A. Nazarov},
     title = {Trapped modes in a~cylindrical elastic waveguide with a~damping gasket},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {863--881},
     year = {2008},
     volume = {48},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a9/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Trapped modes in a cylindrical elastic waveguide with a damping gasket
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 863
EP  - 881
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a9/
LA  - ru
ID  - ZVMMF_2008_48_5_a9
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Trapped modes in a cylindrical elastic waveguide with a damping gasket
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 863-881
%V 48
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a9/
%G ru
%F ZVMMF_2008_48_5_a9
S. A. Nazarov. Trapped modes in a cylindrical elastic waveguide with a damping gasket. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 863-881. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a9/

[1] Ursell F., “Trapping modes in the theory of surface waves”, Proc. Cambridge Philos. Soc., 47 (1951), 347–358 | DOI | MR | Zbl

[2] Jones D. S., “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semiinfinite domains”, Proc. Cambridge Philos. Soc., 49 (1953), 668–684 | DOI | MR | Zbl

[3] Evans D. V., “Trapped acoustic modes”, IMA J. Appl. Math., 49 (1992), 45–60 | DOI | MR

[4] Bonnet-Bendhia A.-S., Starling F., “Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem”, Math. Meth. Appl. Sci., 77 (1994), 305–338 | DOI | MR

[5] Evans D. V., Levitin M., Vasil'ev D., “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl

[6] Roitberg I., Vassiliev D., Weidl T., “Edge resonance in an elastic semi-strip”, Quart. J. Appl. Math., 51:1 (1998), 1–13 | DOI | MR | Zbl

[7] Kamotskii I. V., Nazarov C. A., “Uprugie volny, lokalizovannye okolo periodicheskikh semeistv defektov”, Dokl. RAN, 368:6 (1999), 771–773 | MR | Zbl

[8] Kamotskii I. V., Nazarov S. A., “Anomalii Vuda i poverkhnostnye volny v zadachakh rasseyaniya na periodicheskoi granitse. 1, 2”, Matem. sb., 190:1 (1999), 109–138 | MR | Zbl

[9] Kamotskii I. V., Nazarov S. A., “Rasshirennaya matritsa rasseyaniya i eksponentsialno zatukhayuschie resheniya ellipticheskoi zadachi v tsilindricheskoi oblasti”, Zap. nauchn. seminarov peterburgskogo otd. Matem. in-ta RAN, 264, 2000, 66–82 | MR | Zbl

[10] Nazarov S. A., “Kriterii suschestvovaniya zatukhayuschikh reshenii v zadache o rezonatore s tsilindricheskim volnovodom”, Funkts. analiz i ego prilozh., 40:2 (2006), 20–32 | MR | Zbl

[11] Nazarov S. A., “Iskusstvennye kraevye usloviya dlya poiska poverkhnostnykh voln v zadache difraktsii na periodicheskoi granitse”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2265–2276 | MR

[12] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991

[13] Sanchez-Palencia E., “Asymptotic and spectral properties of a class of singular-stiff problems”, J. Math. Pures and Appl., 71 (1992), 379–406 | MR | Zbl

[14] Lobo M., Perez E., “High frequency vibrations in a stiff problem”, Math. Models Methods Appl. Sci., 7 (1977), 291–311 | DOI | MR

[15] Lobo M. H., Nazarov S. A., Perez M. E., “Asymptotically sharp uniform estimates in a scalar spectral stiffness problem”, Cr. Mecanique, 331 (2003), 325–330 | DOI | Zbl

[16] Lobo M. N., Nazarov C. A., Peres M. E., “Sobstvennye kolebaniya silno neodnorodnogo uprugogo tela. Asimptotika i ravnomernye otsenki ostatkov”, Dokl. RAN, 389:2 (2003), 173–176 | MR

[17] Lobo M., Nazarov S. A., Perez E., “Eigen-oscillations of contrasting non-homogeneous bodies: asymptotic and uniform estimates for eigenvalues”, IMA J. Appl. Math., 70 (2005), 419–458 | DOI | MR | Zbl

[18] Nazarov C. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchn. kniga, Novosibirsk, 2001

[19] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR

[20] Kamotskii I. V., Nazarov S. A., “O sobstvennykh funktsiyakh, lokalizovannykh okolo kromki tonkoi oblasti”, Probl. matem. analiza, 19, Nauchn. kniga, Novosibirsk, 1999, 105–148

[21] Nazarov S. A., “Localization effects for eigenfunctions near to the edge of a thin domain”, Math. Bohemica, 127:2 (2002), 283–292 | MR | Zbl

[22] Nazarov C. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR | Zbl

[23] Nazarov S. A., “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Probl. matem. analiza, 16, Izd-vo SPbGU, SPb., 1997, 167–192

[24] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[25] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. matem. ob-va, 16, 1963, 219–292

[26] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[27] Nazarov S. A., “Ob asimptotike spektra zadachi teorii uprugosti dlya tonkoi plastiny”, Sibirskii matem. zhurnal, 41:4 (2000), 895–912 | MR | Zbl

[28] Lekhnitskii S. G., Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977 | MR | Zbl

[29] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[30] Nazarov S. A., “Vesovye funktsii i invariantnye integraly”, Vychisl. mekhan. deformiruemogo tverdogo tela, Vyp. 1, 1990, 17–31

[31] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachricht., 76 (1977), 29–60 | DOI

[32] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachricht., 77 (1977), 25–82 | MR

[33] Duduchava R., Wendland W. L., “The Wiener–Hopf method for systems of pseudodifferential equations with an application to crack problems”, Integral Equat. Operat. Theory, 23:3 (1995), 294–335 | DOI | MR | Zbl

[34] Costabel M., Dauge M., “Crack singularities for general elliptic systems”, Math. Nachr., 235 (2002), 29–49 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[35] Arutyunyan N. Kh., Nazarov S. A., “Ob osobennostyakh funktsii napryazheniya v uglovykh tochkakh poperechnogo secheniya skruchivaemogo sterzhnya s tonkim usilivayuschim pokrytiem”, Prikl. matem. i mekhan., 47:1 (1983), 122–132 | MR

[36] Costabel M., Dauge M., “A singularly perturbed mixed boundary value problem”, Communs Part. Different. Equat., 21:11–12 (1996), 1919–1949 | MR | Zbl

[37] Nazarov S. A., “Treschina na styke anizotropnykh tel. Singulyarnosti uprugikh polei i kriterii razrusheniya pri kontakte beregov”, Prikl. matem. i mekhan., 69:3 (2005), 520–532 | MR | Zbl

[38] Nazarov S. A., “Ravnomernye otsenki ostatkov v asimptoticheskikh razlozheniyakh reshenii zadachi o sobstvennykh kolebaniyakh pezoelektricheskoi plastiny”, Probl. matem. analiza, 25, Nauchn. kniga, Novosibirsk, 2003, 99–188

[39] Gomez D., Lobo M., Nazarov S. A., Perez E., “Spectral stiff problems in domains surrounded by thin bands: Asymptotic and uniform estimates for eigenvalues”, J. Math. Pures and Appl., 85 (2006), 598–632 | MR | Zbl

[40] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122 | MR | Zbl