Variational method for adaptive mesh generation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 831-850 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A variational method is suggested for generating adaptive grids composed of hexahedral cells. The method is based on the minimization of a functional written on a manifold in a space whose variables are usual spatial coordinates in a physical domain and the components of a monitor vector function. A grid is constructed in the manifold, and its projection onto the physical domain yields an adaptive grid. Examples of adaptive grid generation are given.
@article{ZVMMF_2008_48_5_a7,
     author = {B. N. Azarenok},
     title = {Variational method for adaptive mesh generation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {831--850},
     year = {2008},
     volume = {48},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a7/}
}
TY  - JOUR
AU  - B. N. Azarenok
TI  - Variational method for adaptive mesh generation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 831
EP  - 850
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a7/
LA  - ru
ID  - ZVMMF_2008_48_5_a7
ER  - 
%0 Journal Article
%A B. N. Azarenok
%T Variational method for adaptive mesh generation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 831-850
%V 48
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a7/
%G ru
%F ZVMMF_2008_48_5_a7
B. N. Azarenok. Variational method for adaptive mesh generation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 831-850. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a7/

[1] Brackbill J. U., Saltzman J. S., “Adaptive zoning for singular problems in two dimensions”, J. Comput. Phys., 46:3 (1982), 342–368 | DOI | MR | Zbl

[2] Thompson J. F., Warsi Z. U. A., Mastin W., Numerical grid generation, North-Holland, New York etc., 1985 dostupna na http://www.hpc.msstate.edu/publications/gridbook/ | MR | Zbl

[3] Eiseman P. S., “Adaptive grid generation”, Comput. Meth. Appl. Mech. and Eng., 64 (1987), 321–376 | DOI | MR | Zbl

[4] Dvinskv A. S., “Adaptive grid generation from harmonic maps on Riemannian manifolds”, J. Comput. Phys., 95 (1991), 450–476 | DOI | MR

[5] Liseikin V. D., “O konstruirovanii regulyarnykh setok na $n$-mernykh poverkhnostyakh”, Zh. vychisl. matem. i matem. fiz., 31:11 (1991), 1670–1683 | MR

[6] Liseikin V. D., “Obzor metodov postroeniya strukturnykh adaptivnykh setok”, Zh. vychisl. matem. i matem. fiz., 36:1 (1996), 3–41 | MR

[7] Ivanenko S. A., Prokopov G. P., “Metody postroeniya adaptivno-garmonicheskikh setok”, Zh. vychisl. matem. i matem. fiz., 37:6 (1997), 643–662 | MR | Zbl

[8] Ivanenko S. A., Adaptivno-garmonicheskie setki, VTs RAN, M., 1997 | MR

[9] Liseikin V. D., Grid generation methods, Springer, New York, 1999 | MR | Zbl

[10] J. F. Thompson, B. K. Soni, N. P. Weatherill (eds.), Handbook of grid generation, CRC Press, Boca Raton, FL, 1999 | MR | Zbl

[11] Gilmanov A. N., Metody adaptivnykh setok v zadachakh gazovoi dinamiki, Nauka. Fizmatlit, M., 2000 | MR

[12] Cao W. M., Huang W. Z., Russel R. D., “A study of monitor functions for two dimensional adaptive mesh generation”, SIAM J. Sci. Comput., 20 (1999), 1978–1994 | DOI | MR | Zbl

[13] Liao G., Liu F., Pena G. D., Peng D., Osher S., “Level-set-based deformation method lor adaptive grids”, J. Comput. Phys., 159 (2000), 103–122 | DOI | MR | Zbl

[14] Azarenok B. H., Ivanenko S. A., “O primenenii adaptivnykh setok dlya chislennogo resheniya nestatsionarnykh zadach gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1386–1407 | MR | Zbl

[15] Azarenok B. N., “O primenenii variatsionnogo barernogo metoda v giperbolicheskikh zadachakh gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 43:7 (2003), 1072–1095 | MR | Zbl

[16] Azarenok B. N., “Ob odnoi skheme rascheta detonatsionnykh voln na podvizhnykh setkakh”, Zh. vychisl. matem. i matem. fiz., 45:12 (2005), 2260–2282 | MR | Zbl

[17] Shokin Yu. I., Liseikin V. D., Lebedev A. C. i dr., Metody rimanovoi geometrii v zadachakh postroeniya setok, Nauka, Novosibirsk, 2005

[18] Ivanenko S. A., Charakhchyan A. A., “Krivolineinye setki iz vypuklykh chetyrekhugolnikov”, Zh. vychisl. matem. i matem. fiz., 28:4 (1988), 503–514 | MR

[19] Azarenok B. N., Ob odnom variatsionnom metode postroeniya prostranstvennykh setok, VTs RAN, M., 2006 | MR

[20] Azarenok B. N., “A variational hexahedral grid generator with control metric”, J. Comput. Phys., 218:2 (2006), 720–747 | DOI | MR | Zbl

[21] Ivanenko S. A., “Variatsionnye metody postroeniya adaptivnykh setok”, Zh. vychisl. matem. i matem. fiz., 43:6 (2003), 830–844 | MR | Zbl

[22] Ushakova O. V., “On nondegeneracy of three-dimensional grids”, Proc. Steklov Inst. of Math., Suppl. 1, M., 2004, S78–S100 | MR | Zbl

[23] Bobylev H. A., Ivanenko S. A., Kazunin A. B., “O kusochno-gladkikh gomeomorfnykh otobrazheniyakh ogranichennykh oblastei i ikh prilozheniyakh k teorii setok”, Zh. vychisl. matem. i matem. fiz., 43:6 (2003), 808–817 | MR | Zbl

[24] Ushakova O. V., “Usloviya nevyrozhdennosti trekhmernykh yacheek. Formula dlya ob'ema yacheek”, Zh. vychisl. matem. i matem. fiz., 41:6 (2001), 881–894 | MR | Zbl

[25] Knupp P., Luczak R., “Truncation error in grid generation: a case study”, Numer. Meth. for Partial Differential Equat., 11 (1995), 561–571 | DOI | MR | Zbl

[26] Bronina T. N., Ushakova O. B., “Raschety trekhmernykh strukturirovannykh setok v konfiguratsiyakh s osobennostyami”, Tr. Vseros. konf. “Chisl. geometriya, postroenie raschetnykh setok i vysokoproizvoditelnye vychisl.”, VTs RAN, M., 2006, 190–199