Conditioning of finite difference schemes for a singularly perturbed convection-diffusion parabolic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 813-830 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the case of the boundary value problem for a singularly perturbed convection-diffusion parabolic equation, conditioning of an $\varepsilon$-uniformly convergent finite difference scheme on a piecewise uniform grid is examined. Conditioning of a finite difference scheme on a uniform grid is also examined provided that this scheme is convergent. For the condition number of the scheme on a piecewise uniform grid, an $\varepsilon$-uniform bound $O(\delta^{-2}\ln\delta_1^{-1}+\delta_0^{-1})$ is obtained, where $\delta_1$ and $\delta_0$ are the error components due to the approximation of the derivatives with respect to $x$ and $t$, respectively. Thus, this scheme is $\varepsilon$-uniformly well-conditioned. For the condition number of the scheme on a uniform grid, we have the estimate $O(\varepsilon^{-1}\delta_1^{-2}+\delta_0^{-1})$; this scheme is not $\varepsilon$-uniformly well-conditioned. In the case of the difference scheme on a uniform grid, there is an additional error due to perturbations of the grid solution; this error grows unboundedly as $\varepsilon\to0$, which reduces the accuracy of the grid solution (the number of correct significant digits in the grid solution is reduced). The condition numbers of the matrices of the schemes under examination are the same; both have an order of $O(\varepsilon^{-1}\delta_1^{-2}+\delta_0^{-1})$. Neither the matrix of the $\varepsilon$-uniformly convergent scheme nor the matrix of the scheme on a uniform grid is $\varepsilon$-uniformly well-conditioned.
@article{ZVMMF_2008_48_5_a6,
     author = {G. I. Shishkin},
     title = {Conditioning of finite difference schemes for a~singularly perturbed convection-diffusion parabolic equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {813--830},
     year = {2008},
     volume = {48},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a6/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Conditioning of finite difference schemes for a singularly perturbed convection-diffusion parabolic equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 813
EP  - 830
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a6/
LA  - ru
ID  - ZVMMF_2008_48_5_a6
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Conditioning of finite difference schemes for a singularly perturbed convection-diffusion parabolic equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 813-830
%V 48
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a6/
%G ru
%F ZVMMF_2008_48_5_a6
G. I. Shishkin. Conditioning of finite difference schemes for a singularly perturbed convection-diffusion parabolic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 813-830. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a6/

[1] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[2] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992

[3] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Sci., Singapore, 1996 | MR

[4] Farrell P. A., Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust computational techniques for boundary layers, CRC Press, Boca Raton, 2000 | MR | Zbl

[5] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convectiondiffusion and flow problems, Springer, Heidelberg, 1996 | MR

[6] Liseikin V. D., Grid generation methods, Springer, Berlin, 1999 | MR | Zbl

[7] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973 | MR | Zbl

[8] Babenka K. I., Osnovy chislennogo analiza, Nauka, M., 1986 | MR

[9] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[10] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[11] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[12] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[13] Shishkin G. I., “Aposteriorno adaptiruemye (po gradientu resheniya) setki v approksimatsii singulyarno vozmuschennykh uravnenii konvektsii-diffuzii”, Vychisl. tekhnol., 6:1–2 (2001), 72–87 | MR | Zbl

[14] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennykh uravnenii s konvektivnymi chlenami pri vozmuschenii dannykh”, Zh. vychisl. matem. i matem. fiz., 41:5 (2001), 692–707 | MR | Zbl

[15] Shishkin G. I., “On conditioning of a Schwarz method for singularly perturbed convection-diffusion equations in the case of disturbances in the data of the boundary-value problem”, Comput. Meth. Appl. Math., 3:3 (2003), 459–487 | MR | Zbl

[16] Hemker P. W., Shishkin G. I., Shishkina L. P., “Novel defect-correction high-order, in space and time, accurate schemes for parabolic singularly perturbed convection-diffusion problems. A posteriori adaptive mesh technique”, Comput. Meth. Appl. Math., 3:3 (2003), 387–404 | MR | Zbl

[17] Shichkin G. I., “Robust novel high-order accurate numerical methods for singularly perturbed convection-diffusion problems”, Math. Modelling and Analys., 10:4 (2005), 393–412 | MR

[18] Shishkin G. I., “Ispolzovanie reshenii na vlozhennykh setkakh pri approksimatsii singulyarno vozmuschennogo parabolicheskogo uravneniya konvektsii-diffuzii na adaptiruyuschikhsya setkakh”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1617–1637 | MR