Traveling-wave solution to a nonlinear equation in semiconductors with strong spatial dispersion
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 808-812 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The third-order nonlinear differential equation $(u_{xx}-u)_t+u_{xxx}+uu_x=0$ is analyzed and compared with the Korteweg–de Vries equation $u_t+u_{xxx}-6uu_x=0$. Some integrals of motion for this equation are presented. The conditions are established under which a traveling wave is a solution to this equation.
@article{ZVMMF_2008_48_5_a5,
     author = {A. B. Alshin and M. O. Korpusov and E. V. Yushkov},
     title = {Traveling-wave solution to a~nonlinear equation in semiconductors with strong spatial dispersion},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {808--812},
     year = {2008},
     volume = {48},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a5/}
}
TY  - JOUR
AU  - A. B. Alshin
AU  - M. O. Korpusov
AU  - E. V. Yushkov
TI  - Traveling-wave solution to a nonlinear equation in semiconductors with strong spatial dispersion
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 808
EP  - 812
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a5/
LA  - ru
ID  - ZVMMF_2008_48_5_a5
ER  - 
%0 Journal Article
%A A. B. Alshin
%A M. O. Korpusov
%A E. V. Yushkov
%T Traveling-wave solution to a nonlinear equation in semiconductors with strong spatial dispersion
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 808-812
%V 48
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a5/
%G ru
%F ZVMMF_2008_48_5_a5
A. B. Alshin; M. O. Korpusov; E. V. Yushkov. Traveling-wave solution to a nonlinear equation in semiconductors with strong spatial dispersion. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 808-812. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a5/

[1] Gabov S., Vvedenie v teoriyu nelineinykh voln, Izd-vo MGU, M., 1988 | MR | Zbl

[2] Gardner C. S., Green J. M., Kruskal M. D., Miura R. M., “Method for solving the Korteveg–de Vries equation”, Phys. Rev. Letts., 19 (1967), 1095–1097 | DOI

[3] Lennels J., “Traveling wave solution of Camassa–Holm and Korteweg–de Vries equations”, J. Nonlinear Math. Phys., 11 (2005), 508–520 | DOI | MR

[4] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya Sobolevskogo tipa, Fizmatlit, M., 2007

[5] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1962