@article{ZVMMF_2008_48_5_a4,
author = {Yu. A. Kochetov},
title = {Computational bounds for local search in combinatorial optimization},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {788--807},
year = {2008},
volume = {48},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a4/}
}
TY - JOUR AU - Yu. A. Kochetov TI - Computational bounds for local search in combinatorial optimization JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 788 EP - 807 VL - 48 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a4/ LA - ru ID - ZVMMF_2008_48_5_a4 ER -
Yu. A. Kochetov. Computational bounds for local search in combinatorial optimization. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 788-807. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a4/
[1] Arkhipova T. T., Sergienko I. V., “O formalizatsii i reshenii nekotorykh zadach organizatsii vychislitelnogo protsessa v sistemakh obrabotki dannykh”, Kibernetika, 1973, no. 5
[2] Arkhipova T. T., Sergienko I. V., “Metod vozmozhnykh napravlenii i metod vektora spada v tselochislennom programmirovanii”, Kibernetika, 1975, no. 5
[3] Volkonskii V. A., Levina L. V., Pomanskii A. B. i dr., “Ob odnom iterativnom metode resheniya zadach tselochislennogo programmirovaniya”, Dokl. AN SSSR, 169:6 (1966)
[4] Geri V., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982 | MR
[5] Emelinev V. A., Kovalev M. M., Kononenko A. M., “Dva priblizhennykh metoda resheniya zadach tselochislennogo lineinogo programmirovaniya s bulevymi peremennymi”, Avtomatizirovannye sistemy upravleniya, Vyp. 5, TsNIITU, Minsk, 1971
[6] Zhuravlev Yu. I., “Lokalnye algoritmy vychisleniya informatsii”, Kibernetika, 1965, no. 1, 12–19 | MR
[7] Kovalev M. M., Piryanovich V. A., “Sluchainyi poisk lokalno-optimalnykh planov zadach diskretnoi optimizatsii”, Vopr. sovershenstvovaniya planirovaniya i upravleniya narodnym khozyaistvom, NIIEMP, Minsk, 1975
[8] Korbut A. A., Sigal I. Kh., Finkelshtein Yu. Yu., “Gibridnye metody v diskretnom programmirovanii”, Izv. AN SSSR. Tekhn. kibernetika, 1988, no. 1, 65–77
[9] Kochetov Yu. A., “Veroyatnostnye metody lokalnogo poiska dlya zadach diskretnoi optimizatsii”, Diskretnaya matem. i ee prilozh., MGU, M., 2001, 87–117
[10] Kochetov Yu. A., Paschenko M. G., Plyasunov A. B., “O slozhnosti lokalnogo poiska v zadache $p$-mediane”, Diskretnyi analiz i issl. operatsii. Ser. 2, 12:2 (2005), 44–71 | MR
[11] Lbov G. S., “Vybor effektivnoi sistemy zavisimykh priznakov”, Vychisl. sistemy, 19, 1965, 21–34
[12] Papadimitriu X., Staiglits K., Kombinatornaya optimizatsiya. Algoritmy i slozhnost, Mir, M., 1985 | MR
[13] Rastrigin L. A., “Sluchainyi poisk – spetsifika, etapy istorii i predrassudki”, Vopr. kibernetiki, 33, 1978, 3–16
[14] Sergienko I. V., “Primenenie metoda vektora spada dlya resheniya zadach tselochislennogo programmirovaniya”, Upravlyayuschie sistemy i mashiny, 1975, no. 3
[15] Sergienko I. V., Kaspshitskaya M. F., Modeli i metody resheniya na EVM kombinatornykh zadach optimizatsii, Nauk. dumka, Kiev, 1981 | MR
[16] Sigal I. Kh., “Posledovatelnost primeneniya algoritmov priblizhennogo resheniya v kombinirovannom algoritme resheniya zadachi kommivoyazhera”, Zh. vychisl. matem. i matem. fiz., 29:11 (1989), 1714–1721 | MR | Zbl
[17] Trubin V. A., “O metode resheniya zadach tselochislennogo lineinogo programmirovaniya spetsialnogo vida”, Dokl. AN SSSR, 189:5 (1969) | MR | Zbl
[18] Finkelshtein Yu. Yu., Priblizhennye metody i prikladnye zadachi diskretnogo programmirovaniya, Nauka, M., 1976
[19] Finkelshtein Yu. Yu., “Ob odnom klasse zadach diskretnogo programmirovaniya”, Ekonomika i matem. metody, 4:4 (1968), 652–655
[20] Finkelshtein Yu. Yu., “O reshenii zadach diskretnogo programmirovaniya spetsialnogo vida”, Ekonomika i matem. metody, 1:2 (1965), 262–270
[21] Ford L., Falkerson D., Potoki v setyakh, Mir, M., 1966 | Zbl
[22] Cherenin V. P., Khachaturov V. R., “Reshenie metodom posledovatelnykh raschetov odnogo klassa zadach o razmeschenii proizvodstva”, Ekonomiko-matem. metody, Vyp. 2, Nauka, M., 1965, 279–290
[23] Aarts E. H. L., Korst J. H. M., Laarhoven van P. J. M., “Simulated annealing”, Local Search in Combinatorial Optimizat., Wiley, Chichester, 1997, 91–120 | MR | Zbl
[24] Ahuja R. K., Ergun O., Orlin J. B., Purinen A. P., “A survey of very large-scale neighborhood search techniques”, Discrete Appl. Math., 123:1–3 (2002), 75–102 | DOI | MR | Zbl
[25] Alekseeva E., Kochetov Yu., Plyasunov A., “Complexity of local search for the $p$-median problem”, European J. Operat. Res., 191 (2008), 736–752 | DOI | MR | Zbl
[26] Angel E., Zissimopoulos V., “On the classification of NP-complete problems in terms of their correlation coefficient”, Discrete Appl. Math., 99 (2000), 261–277 | DOI | MR | Zbl
[27] Arora S., Raghavan P., Rao S., “Approximation schemes for Euclidean $k$-medians and related problems”, Proc. 30th Ann. ACM Symp. Theory of Comput., 1998, 106–113 | MR | Zbl
[28] Ausiello G., Crescenzi P., Gambosi G., Complexity and approximation: Combinatorial optimization problems and their approximability properties, Springer, Berlin, 1999 | MR | Zbl
[29] Bock F., “An algorithm for solving “travelling-salesman” and related network optimization problems”, Bull. Fourteenth Nat. Meeting of the Operat. Res. Soc. America, 1958, 897
[30] Burkard R. E., Deineko V. G., Woeginger G. J., “The traveling salesman problem and the PQ-tree”, Proc. IPCO V, Lect. Notes in Comput. Sci., 184, Springer, Berlin, 1996, 490–504 | MR
[31] E. K. Burke, G. Kendall (eds.), Search methodologies. Introductory tutorials in Optimization and Decision Support Techn., Springer, Berlin, 2005
[32] Croes G. A., “A method for solving traveling salesman problems”, Operat. Res., 6 (1958), 791–812 | DOI | MR
[33] Fabrikant A., Papadimitriou C., Talwar K., “The complexity of pure Nash equilibria”, Proc. 36th Ann. ACM Symp. Theory Comput., Chicago: IL USA, 2004, 604–612 | MR
[34] Fiduccia C. M., Mattheyses R. M., “A linear-time heuristic for improving network partitions”, Proc. 19th Design Automation Conf., IEEE Comput. Soc. Press, Los Alamitos, CA, 1982, 175–181
[35] Fischer S. T., “A note on the complexity of local search problems”, Information Processing Letts., 53 (1995), 69–75 | DOI | MR | Zbl
[36] Fridman M. L., Johnson D. S., McGeoch L. A., Ostheimer G., “Data structures for traveling salesman”, J. Algorithms, 18 (1995), 432–479 | DOI | MR
[37] Grover L. K., “Local search and the local structure of NP-complete problems”, Operat. Res. Letts, 12:4 (1992), 235–244 | DOI | MR
[38] Guha S., Khuller S., “Greedy strikes back: improved facility location algorithms”, J. Algorithms, 31 (1999), 228–248 | DOI | MR | Zbl
[39] Gutin G., “Exponential neighborhood local search for the traveling salesman problem”, Comput. Operat. Res., 26 (1999), 313–320 | DOI | MR | Zbl
[40] Gutin G., Yeo A., “Small diameter neighborhood graphs for the traveling salesman problem: four moves from tour to tour”, Comput. Operat. Res., 26 (1999), 321–327 | DOI | MR | Zbl
[41] Johnson D. S., McGeoch L. A., “The traveling salesman problem: a case study”, Local Search in Combinatorial Optimizat., Wiley, Chichester, 215–310 | MR | Zbl
[42] Johnson D. S., “Local optimization and the traveling salesman problem”, Automata, Languages, and Programming, Lect. Notes in Comput. Sci., 443, Springer, Berlin, 1990, 446–61 | MR
[43] Johnson D. S., Papadimitriou C. H., Yannakakis M., “How easy is local search?”, J. Comput. and System Sci., 37 (1988), 79–100 | DOI | MR | Zbl
[44] Kernighan B. W., Lin S., “An efficient heuristic procedure for partitioning graphs”, Bell System Techn. J., 49 (1970), 291–307 | Zbl
[45] Kochetov Yu., Ivanenko D., “Computationally difficult instances for the uncapacitated facility location problem”, Metaheuristics: Progress as Real Solvers, eds. T. Ibaraki et al., Springer, Berlin, 2005, 351–367
[46] Korte B., Vygen J., Combinatorial optimization. Theory and algorithms, 3th ed., Springer, Berlin, 2005 | Zbl
[47] Krentel M. W., “Structure in locally optimal solutions”, Proc. 3th Ann. Symp. Foundation Comput. Sci., 1989, 216–222
[48] Krentel M. W., “On finding and verifying locally optimal solutions”, SIAM J. Comput., 19 (1990), 742–751 | DOI | MR
[49] Lin S., Kernighan B. W., “An efficient heuristic algorithm for the traveling-salesman problem”, Operat. Res., 21 (1973), 498–516 | DOI | MR | Zbl
[50] Nicholson T. A. J., “A sequential method for discrete optimization problems and its application to the assignment, traveling salesman and tree scheduling problems”, J. Inst. Math. Appl., 13 (1965), 362–375
[51] Orlin J. B., Punnen A. P., Schulz A., “Approximate local search in combinatorial optimization”, SIAM J. Comput., 33 (2004), 1201–1214 | DOI | MR | Zbl
[52] Osman L. H., Laporte G., “Metaheuristics: a bibliography”, Ann. Operat. Res., 63 (1996), 513–628 | DOI | MR
[53] Papadimitriou C. H., “The complexity of the Lin-Kernighan heuristic for the traveling salesman problem”, SIAM J. Comput., 21 (1992), 450–463 | DOI | MR
[54] Punnen A. P., The traveling salesman problem: new polynomial approximation algorithms and domination analysis, Res. Rep. St. John, Univ. New Brunswick, 1996
[55] C. C. Ribeiro, P. Hansen (eds.), Meta-heuristics: advances and trends in local search paradigms for optimization, Kluwer. Acad. Publs, Boston, 1998
[56] Schäffer A. A., Yannakakis M., “Simple local search problems that are hard to solve”, SIAM J. Comput., 20:1 (1991), 56–87 | DOI | MR | Zbl
[57] Stadler P. F., “Corelation in landscapes of combinatorial optimization problems”, Europhys. Letts., 20 (1992), 479–482 | DOI
[58] Stadler P. F., Schnabl W., “The landscape of the traveling salesman problem”, Phys. Letts. A, 161 (1992), 337–344 | DOI | MR | Zbl
[59] Tovey C. A., “Low order polynomial bounds on the expected performance of local improvement algorithms”, Math. Program., 35 (1986), 193–224 | DOI | MR | Zbl
[60] Tovey C. A., “Local improvement on discrete structures”, Local Search in Combinatorial Optimizat., Wiley, Chichester, 1997, 57–90 | MR
[61] Verhoeven M. G. A., Swinkels P. C. J., Aarts E. H. L., Parallel local search and the traveling salesman problem, Working Paper, Philips Res. Labs., Eindhoven, 1995
[62] Vredeveld T., Lenstra J. K., “On local search for the generalized graph coloring problem”, Operat. Res. Letts., 31 (2003), 28–34 | DOI | MR | Zbl
[63] Weiner P., Savage S. L., Bagchi A., “Neighborhood search algorithms for guaranteeing optimal traveling salesman tours must be inefficient”, J. Comput. and System Sci., 12 (1976), 25–35 | MR | Zbl
[64] Yannakakis M., “Computational complexity”, Local Search in Combinatorial Optimizat., Wiley, Chichester, 1997, 19–55 | MR | Zbl
[65] Ausello G., Protasi M., “Local search reducibility and approximability of NP-optimization problems”, Information Proc. Letts., 54 (1995), 73–79 | DOI | MR