Computational bounds for local search in combinatorial optimization
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 788-807
Voir la notice de l'article provenant de la source Math-Net.Ru
The results related to finding local optima in combinatorial optimization are overviewed. The class of polynomial-time local search problems (class PLS) is considered. By analogy with Cook's theorem, the existence of most complicated problems in this class is established. The number of steps in local descent algorithms is estimated in the worst and average cases. The local search determination of exact and approximate solutions with guaranteed error bounds is discussed.
@article{ZVMMF_2008_48_5_a4,
author = {Yu. A. Kochetov},
title = {Computational bounds for local search in combinatorial optimization},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {788--807},
publisher = {mathdoc},
volume = {48},
number = {5},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a4/}
}
TY - JOUR AU - Yu. A. Kochetov TI - Computational bounds for local search in combinatorial optimization JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 788 EP - 807 VL - 48 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a4/ LA - ru ID - ZVMMF_2008_48_5_a4 ER -
Yu. A. Kochetov. Computational bounds for local search in combinatorial optimization. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 788-807. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a4/