@article{ZVMMF_2008_48_5_a12,
author = {A. G. D'yakonov},
title = {Metrics of algebraic closures in pattern recognition problems with two nonoverlapping classes},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {916--927},
year = {2008},
volume = {48},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a12/}
}
TY - JOUR AU - A. G. D'yakonov TI - Metrics of algebraic closures in pattern recognition problems with two nonoverlapping classes JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 916 EP - 927 VL - 48 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a12/ LA - ru ID - ZVMMF_2008_48_5_a12 ER -
%0 Journal Article %A A. G. D'yakonov %T Metrics of algebraic closures in pattern recognition problems with two nonoverlapping classes %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 916-927 %V 48 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a12/ %G ru %F ZVMMF_2008_48_5_a12
A. G. D'yakonov. Metrics of algebraic closures in pattern recognition problems with two nonoverlapping classes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 916-927. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a12/
[1] Zhuravlev Yu. I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Probl. kibernetiki, 33, Nauka, M., 1978, 5–68
[2] Zhuravlev Yu. I., Nikiforov V. V., “Algoritmy raspoznavaniya, osnovannye na vychislenii otsenok”, Kibernetika, 1971, no. 3, 1–11 | Zbl
[3] Zhuravlev Yu. I., “Korrektnye algoritmy nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. II”, Kibernetika, 1977, no. 6, 21–27 | Zbl
[4] Matrosov V. L., “O kriteriyakh polnoty modeli algoritmov vychisleniya otsenok i ee algebraicheskikh zamykanii”, Dokl. AN SSSR, 258:4 (1981), 791–796 | MR
[5] Dyakonov A. G., Algebra nad algoritmami vychisleniya otsenok: Uchebnoe posobie, Izdat. otd. f-ta VMiK MGU, M., 2006
[6] Dyakonov A. G., “Algebra nad algoritmami vychisleniya otsenok: minimalnaya stepen korrektnogo algoritma”, Zh. vychisl. matem. i matem. fiz., 45:6 (2005), 1134–1145 | MR
[7] Ilin V. A., Kim G. D., Lineinaya algebra i analiticheskaya geometriya, Izd-vo MGU, M., 1998
[8] Deza M., Dutour M., Data mining lor cones of metrics, quasi-metrics, hemi-metrics and super-metrics, CNRS/ENS, Paris, Tokyo, 2002, arXiv: math/0201011
[9] Sachkov V. H., Kombinatornye metody diskretnoi matematiki, Nauka, M., 1977
[10] Burges C. J. C., “A Tutorial on support vector machines for pattern recognition”, Data Mining and Knowledge Discovery, 2 (1998), 121–167 | DOI
[11] Vorontsov K. V., Lektsii po metodu opornykh vektorov www.ccas.ru/voron
[12] Haykin S. S., Neural networks: A comprehensive foundation, sec. ed., Prentice-Hall, 1998
[13] Zhuravlev Yu. I., Isaev I. V., “Postroenie algoritmov raspoznavaniya, korrektnykh dlya zadannoi kontrolnoi vyborki”, Zh. vychisl. matem. i matem. fiz., 19:3 (1979), 726–738 | MR | Zbl
[14] Maisuradze A. I., “Ob optimalnykh razlozheniyakh konechnykh metricheskikh konfiguratsii v zadachakh raspoznavaniya obrazov”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1697–1707 | MR
[15] Breitenbach M., Griidic G. Z., Clustering with local and global consistency, NIPS, Also Available as Techn. Rept. CU-CS-973-04, 2004 | Zbl