Dynamics of a rotating layer of an ideal electrically conducting incompressible fluid
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 882-898
Voir la notice de l'article provenant de la source Math-Net.Ru
A system of nonlinear partial differential equations is considered that models perturbations in a layer of an ideal electrically conducting rotating fluid bounded by spatially and temporally varying surfaces with allowance for inertial forces. The system is reduced to a scalar equation. The solvability of initial boundary value problems arising in the theory of waves in conducting rotating fluids can be established by analyzing this equation. Solutions to the scalar equation are constructed that describe small-amplitude wave propagation in an infinite horizontal layer and a long narrow channel.
@article{ZVMMF_2008_48_5_a10,
author = {S. E. Kholodova},
title = {Dynamics of a~rotating layer of an ideal electrically conducting incompressible fluid},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {882--898},
publisher = {mathdoc},
volume = {48},
number = {5},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a10/}
}
TY - JOUR AU - S. E. Kholodova TI - Dynamics of a rotating layer of an ideal electrically conducting incompressible fluid JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 882 EP - 898 VL - 48 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a10/ LA - ru ID - ZVMMF_2008_48_5_a10 ER -
%0 Journal Article %A S. E. Kholodova %T Dynamics of a rotating layer of an ideal electrically conducting incompressible fluid %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 882-898 %V 48 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a10/ %G ru %F ZVMMF_2008_48_5_a10
S. E. Kholodova. Dynamics of a rotating layer of an ideal electrically conducting incompressible fluid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 882-898. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a10/