Dynamics of a rotating layer of an ideal electrically conducting incompressible fluid
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 882-898 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of nonlinear partial differential equations is considered that models perturbations in a layer of an ideal electrically conducting rotating fluid bounded by spatially and temporally varying surfaces with allowance for inertial forces. The system is reduced to a scalar equation. The solvability of initial boundary value problems arising in the theory of waves in conducting rotating fluids can be established by analyzing this equation. Solutions to the scalar equation are constructed that describe small-amplitude wave propagation in an infinite horizontal layer and a long narrow channel.
@article{ZVMMF_2008_48_5_a10,
     author = {S. E. Kholodova},
     title = {Dynamics of a~rotating layer of an ideal electrically conducting incompressible fluid},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {882--898},
     year = {2008},
     volume = {48},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a10/}
}
TY  - JOUR
AU  - S. E. Kholodova
TI  - Dynamics of a rotating layer of an ideal electrically conducting incompressible fluid
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 882
EP  - 898
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a10/
LA  - ru
ID  - ZVMMF_2008_48_5_a10
ER  - 
%0 Journal Article
%A S. E. Kholodova
%T Dynamics of a rotating layer of an ideal electrically conducting incompressible fluid
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 882-898
%V 48
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a10/
%G ru
%F ZVMMF_2008_48_5_a10
S. E. Kholodova. Dynamics of a rotating layer of an ideal electrically conducting incompressible fluid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 882-898. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a10/

[1] Alven G., Feltkhammar K.-G., Kosmicheskaya elektrodinamika, Mir, M., 1967

[2] Busse F. H., “A model of the geodynamo”, Geophys. J. Roy. Asron. Soc., 42 (1975), 437–459 | Zbl

[3] Busse F. H., “Generation of planetary by convection”, Phys. Earth Planet. Inter., 12 (1976), 350–358 | DOI

[4] Zhang K.-K., Busse F. H., “Finite amplitude convection and magnetic field generation in a rotating spherical shell”, Geophys. Astrophys. Fluid Dynamics, 44 (1988), 33–54 | DOI

[5] Zhang K.-K., Busse F. H., “Convection driven magnetohydrodynamic dynamos in rotating spherical shell”, Geophys. Astrophys. Fluid Dynamics, 49 (1989), 97–116 | DOI | Zbl

[6] Zhang K.-K., Busse F. H., “Generation of magnetic fields by convection in a rotating spherical fluid shell of infinite Prandtl number”, Phys. Earth Planet. Inter., 59 (1990), 208–222 | DOI

[7] Eltayeb I. A., “Hydromagnetic convection in a rapidly rotating fluid layer”, Proc. Roy. Soc. London A, 326 (1972), 229–254 | DOI | Zbl

[8] Eltayeb I. A., “Overstable hydromagnetic convection in a rapidly rotating fluid layer”, J. Fluid Mech., 71 (1975), 161–179 | DOI | Zbl

[9] Gabov C. A., Sveshnikov A. G., Lineinye zadachi nestatsionarnykh vnutrennikh voln, Nauka, M., 1990