Dynamics of a rotating layer of an ideal electrically conducting incompressible fluid
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 882-898

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of nonlinear partial differential equations is considered that models perturbations in a layer of an ideal electrically conducting rotating fluid bounded by spatially and temporally varying surfaces with allowance for inertial forces. The system is reduced to a scalar equation. The solvability of initial boundary value problems arising in the theory of waves in conducting rotating fluids can be established by analyzing this equation. Solutions to the scalar equation are constructed that describe small-amplitude wave propagation in an infinite horizontal layer and a long narrow channel.
@article{ZVMMF_2008_48_5_a10,
     author = {S. E. Kholodova},
     title = {Dynamics of a~rotating layer of an ideal electrically conducting incompressible fluid},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {882--898},
     publisher = {mathdoc},
     volume = {48},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a10/}
}
TY  - JOUR
AU  - S. E. Kholodova
TI  - Dynamics of a rotating layer of an ideal electrically conducting incompressible fluid
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 882
EP  - 898
VL  - 48
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a10/
LA  - ru
ID  - ZVMMF_2008_48_5_a10
ER  - 
%0 Journal Article
%A S. E. Kholodova
%T Dynamics of a rotating layer of an ideal electrically conducting incompressible fluid
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 882-898
%V 48
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a10/
%G ru
%F ZVMMF_2008_48_5_a10
S. E. Kholodova. Dynamics of a rotating layer of an ideal electrically conducting incompressible fluid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 882-898. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a10/