Spectral reduction for control systems modeling passive integrated circuits
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 746-762 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Linear control systems modeling passive integrated circuits are examined. A new algebraic method of spectral reduction equipped with efficient tools for preserving passivity is proposed and justified. For RC networks (circuits), this method is similar to and can be regarded as an extension of the well-known PACT method, which is based on congruence transforms. Up to now, such an extension seemed to be impossible, and different techniques were used for the reduction of RCL and RCLM networks. Some numerical results are presented.
@article{ZVMMF_2008_48_5_a1,
     author = {I. A. Karas\"eva and Yu. M. Nechepurenko and A. S. Potyagalova},
     title = {Spectral reduction for control systems modeling passive integrated circuits},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {746--762},
     year = {2008},
     volume = {48},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a1/}
}
TY  - JOUR
AU  - I. A. Karasëva
AU  - Yu. M. Nechepurenko
AU  - A. S. Potyagalova
TI  - Spectral reduction for control systems modeling passive integrated circuits
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 746
EP  - 762
VL  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a1/
LA  - ru
ID  - ZVMMF_2008_48_5_a1
ER  - 
%0 Journal Article
%A I. A. Karasëva
%A Yu. M. Nechepurenko
%A A. S. Potyagalova
%T Spectral reduction for control systems modeling passive integrated circuits
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 746-762
%V 48
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a1/
%G ru
%F ZVMMF_2008_48_5_a1
I. A. Karasëva; Yu. M. Nechepurenko; A. S. Potyagalova. Spectral reduction for control systems modeling passive integrated circuits. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 5, pp. 746-762. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_5_a1/

[1] Celik M., Pileggi L., Odabasioglu A., IS interconnect analysis, Kluwer Academic Publs, Boston etc., 2002

[2] Anderson V. D. O., Vongpanitlerd S., Network analysis and synthesis, Prentice-Hall, NJ: Englewood Cliffs, 1973

[3] Wohlers M. R., Lumped and distributed passive networks: A generalized and advanced viewpoint, Acad. Press, N.Y., 1969 | Zbl

[4] Kerns K. J., Yang A. T., “Stable and efficient reduction of large multiport RC networks by pole analysis via congruence transforms”, IEEE Trans. Computer-Aided Desing, 17:7 (1997), 734–744 | DOI

[5] Kerns K. J., Yang A. T., “Preservation of passivity during RLC network reduction via congruence transforms”, IEEE Trans. Computer-Aided Desing, 16:7 (1998), 582–590 | DOI

[6] Golub G. H., Van Loan C. F., Matrix computations, John Hopkins Univ. Press, London, 1991

[7] Godunov S. K., Modern aspects of linear algebra, Transl. Math. Monographs, 175, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[8] Stewart G., Sun J., Matrix perturbation theory, Academic Press, San Diego, California, 1990 | MR | Zbl

[9] Anderson E., Bai Z., Bischof C. et al., LAPACK users guide, SIAM, Philadelphia, 1992

[10] Nechepurenko Yu. M., “A new spectral analysis technology based on the Schur decomposition”, Russ. J. Numer. Analys. Math. Modelling, 14:3 (1999), 265–274 | DOI | MR | Zbl