Approximation of a system of singularly perturbed reaction-diffusion parabolic equations in a rectangle
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 660-673 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dirichlet problem for a system of singularly perturbed reaction-diffusion parabolic equations in a rectangle is considered. The higher order derivatives of the equations are multiplied by a perturbation parameter $\varepsilon^2$, where $\varepsilon$ takes arbitrary values in the interval (0, 1]. When $\varepsilon$ vanishes, the system of parabolic equations degenerates into a system of ordinary differential equations with respect to $t$. When $\varepsilon$ tends to zero, a parabolic boundary layer with a characteristic width $\varepsilon$ appears in a neighborhood of the boundary. Using the condensing grid technique and the classical finite difference approximations of the boundary value problem, a special difference scheme is constructed that converges $\varepsilon$-uniformly at a rate of $O(N^{-2}\ln^2N+N_0^{-1})$, where $N=\min_s N_s$, $N_s+1$ and $N_s+1$ are the numbers of mesh points on the axes $x_s$ and $t$, respectively.
@article{ZVMMF_2008_48_4_a9,
     author = {G. I. Shishkin and L. P. Shishkina},
     title = {Approximation of a~system of singularly perturbed reaction-diffusion parabolic equations in a~rectangle},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {660--673},
     year = {2008},
     volume = {48},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a9/}
}
TY  - JOUR
AU  - G. I. Shishkin
AU  - L. P. Shishkina
TI  - Approximation of a system of singularly perturbed reaction-diffusion parabolic equations in a rectangle
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 660
EP  - 673
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a9/
LA  - ru
ID  - ZVMMF_2008_48_4_a9
ER  - 
%0 Journal Article
%A G. I. Shishkin
%A L. P. Shishkina
%T Approximation of a system of singularly perturbed reaction-diffusion parabolic equations in a rectangle
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 660-673
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a9/
%G ru
%F ZVMMF_2008_48_4_a9
G. I. Shishkin; L. P. Shishkina. Approximation of a system of singularly perturbed reaction-diffusion parabolic equations in a rectangle. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 660-673. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a9/

[1] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[2] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[3] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 1969, no. 4, 841–859 | Zbl

[4] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[5] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR

[6] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[7] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scient., Singapore, 1996 | MR

[8] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convectiondiffusion and flow problems, Springer, Berlin, 1996 | MR

[9] Farrell P. A., Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust computational techniques for boundary layers, Chapman Hall, Boca Raton; CRC Press, 2000 | MR | Zbl

[10] Shishkin G. I., “Raznostnaya skhema dlya singulyarno vozmuschennogo uravneniya parabolicheskogo tipa s razryvnym granichnym usloviem”, Zh. vychisl. matem. i matem. fiz., 28:11 (1988), 1649–1662 | MR

[11] Miller J. J. H., O'Riordan E., Shishkin G. I., “On the use of fitted operator methods for singularly pertubed partial differential equations”, Advanced Math. Comput. and Applic. Proc. Internat. Conf. AMCA-95 (Novosibirsk, 20–24 June, 1995), NCC Publisher, Novosibirsk, 1995, 518–531 | MR

[12] Farrell P. A., Miller J. J. H., O'Riordan E., Shishkin G. I., “On the non-existence of $\varepsilon$-uniform finite difference methods on uniform meshes for semilinear two-point boundary value problems”, Math. Comput., 67:222 (1998), 603–617 | DOI | MR | Zbl

[13] Shishkin G. I., “Approksimatsiya sistem singulyarno vozmuschennykh ellipticheskikh uravnenii reaktsii-diffuzii s dvumya parametrami”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 835–866 | MR

[14] Brainina Kh. Z., Neiman E. Ya., Tverdofaznye reaktsii v elektroanaliticheskoi khimii, Khimiya, M., 1982

[15] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennykh kraevykh zadach dlya sistem ellipticheskikh i parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 35:4 (1995), 542–564 | MR | Zbl

[16] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennykh sistem ellipticheskikh i parabolicheskikh uravnenii s konvektivnymi chlenami”, Differents. ur-niya, 34:12 (1998), 1686–1696 | MR | Zbl

[17] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[18] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[19] Volkov E. A., “O differentsialnykh svoistvakh reshenii kraevykh zadach dlya uravnenii Laplasa i Puassona na pryamougolnike”, Tr. MIAN SSSR, 77, M., 1965, 89–112 | Zbl

[20] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennogo ellipticheskogo uravneniya s konvektivnymi chlenami pri nalichii razlichnykh tipov pogranichnykh sloev”, Zh. vychisl. matem. i matem. fiz., 45:1 (2005), 110–125 | MR | Zbl

[21] O'Riordan E., Shishkin G. I., “Parameter uniform numerical methods for singularly pertubed elliptic problems with parabolic boundary layers”, Appl. Numer. Math., 58 (2008), 1761–1772 | DOI | MR