Cauchy problem for Mathieu's equation at parametric resonance
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 633-650
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mathieu's equation is solved by an asymptotic averaging method in the fourth approximation for the first to fourth resonance domains and in the third approximation for the zero resonance domain. The general periodic and aperiodic solutions on characteristic curves are found, and the general solution is obtained in instability domains and stability-domain areas adjacent to the characteristic curves. All the solutions are explicitly found in the form of functions of an argument without using the auxiliary parameter employed in Whittaker's method. Simple formulas depending on two parameters of the equation are derived for the characteristic exponent in instability domains and for the frequency of slow oscillations in stability domains near the characteristic curves. The theory is developed by analyzing the resonances exhibited by Mathieu's equation.
@article{ZVMMF_2008_48_4_a7,
     author = {A. F. Kurin},
     title = {Cauchy problem for {Mathieu's} equation at parametric resonance},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {633--650},
     year = {2008},
     volume = {48},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a7/}
}
TY  - JOUR
AU  - A. F. Kurin
TI  - Cauchy problem for Mathieu's equation at parametric resonance
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 633
EP  - 650
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a7/
LA  - ru
ID  - ZVMMF_2008_48_4_a7
ER  - 
%0 Journal Article
%A A. F. Kurin
%T Cauchy problem for Mathieu's equation at parametric resonance
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 633-650
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a7/
%G ru
%F ZVMMF_2008_48_4_a7
A. F. Kurin. Cauchy problem for Mathieu's equation at parametric resonance. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 633-650. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a7/

[1] Mak-Lakhlan N. V., Teoriya i prilozheniya funktsii Mate, Izd-vo inostr. lit., M., 1953

[2] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, Ch. 2, Fizmatgiz, M., 1963

[3] Khayasi T., Nelineinye kolebaniya v fizicheskikh sistemakh, Mir, M., 1968

[4] Naife A., Vvedenie v metody vozmuschenii, Mir, M., 1984 | MR

[5] Grebenikov E. A., Metod usredneniya v prikladnykh zadachakh, Nauka, M., 1986 | MR

[6] Zhuravlev V. F., Klimov D. M., Prikladnye metody v teorii kolebanii, Nauka, M., 1988 | MR

[7] Moiseev H. H., Asimptoticheskie metody nelineinoi mekhaniki, Nauka, M., 1981 | MR

[8] Bogolyubov H. H., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[9] Grebenikov E. A., Ryabov Yu. A., Konstruktivnye metody analiza nelineinykh sistem, Nauka, M., 1979 | MR | Zbl

[10] Grebenikov E. A., Mitropolskii Yu. A., Ryabov Yu. A., Vvedenie v rezonansnuyu analiticheskuyu dinamiku, Yanus-K, M., 1989

[11] Kurin A. F., “Zadacha Koshi dlya uravneniya Mate pri parametricheskom rezonanse”, Mezhdunar. konf. “Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz”, Tezisy dokl. (Moskva, 23–29 maya 2005 g.), Matem. in-t im. V. A. Steklova RAN, M., 2005, 374

[12] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972 | MR