Optimal control of a magnetohydrodynamic viscous heat-conducting gas flow
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 623-632
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The control problem for a one-dimensional flow of a polytropic viscous heat-conducting perfect gas through an interval is considered. The density of external currents is taken as the control. The existence of an optimal control function is proved. Necessary optimality conditions are derived. The compactness of the set of solutions is established.
            
            
            
          
        
      @article{ZVMMF_2008_48_4_a6,
     author = {E. V. Amosova},
     title = {Optimal control of a~magnetohydrodynamic viscous heat-conducting gas flow},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {623--632},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a6/}
}
                      
                      
                    TY - JOUR AU - E. V. Amosova TI - Optimal control of a magnetohydrodynamic viscous heat-conducting gas flow JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 623 EP - 632 VL - 48 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a6/ LA - ru ID - ZVMMF_2008_48_4_a6 ER -
E. V. Amosova. Optimal control of a magnetohydrodynamic viscous heat-conducting gas flow. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 623-632. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a6/
