Optimal control of a magnetohydrodynamic viscous heat-conducting gas flow
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 623-632
Cet article a éte moissonné depuis la source Math-Net.Ru
The control problem for a one-dimensional flow of a polytropic viscous heat-conducting perfect gas through an interval is considered. The density of external currents is taken as the control. The existence of an optimal control function is proved. Necessary optimality conditions are derived. The compactness of the set of solutions is established.
@article{ZVMMF_2008_48_4_a6,
author = {E. V. Amosova},
title = {Optimal control of a~magnetohydrodynamic viscous heat-conducting gas flow},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {623--632},
year = {2008},
volume = {48},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a6/}
}
TY - JOUR AU - E. V. Amosova TI - Optimal control of a magnetohydrodynamic viscous heat-conducting gas flow JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 623 EP - 632 VL - 48 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a6/ LA - ru ID - ZVMMF_2008_48_4_a6 ER -
E. V. Amosova. Optimal control of a magnetohydrodynamic viscous heat-conducting gas flow. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 623-632. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a6/
[1] Ban Shi-n., Magnitnaya gazodinamika i dinamika plazmy, Izd-vo inostr. lit., M., 1964
[2] Kazhikhov A. B., Smagulov Sh., Korrektnost i priblizhennye metody dlya modeli magnitnoi gazovoi dinamiki, Dinamika sploshnoi sredy, 26, Novosibirsk, 1976
[3] Lukina E. V., Konovalova D. S., “Issledovanie zadachi optimalnogo upravleniya techeniyami vyazkogo gaza”, Zhurn. vychisl. matem. i matem. fiz., 40:3 (2000), 451–472 | MR | Zbl
[4] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl