Decentralized optimal control of a group of dynamical objects
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 593-609 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of optimal control of a group of coupled dynamical objects is considered. The cases are examined in which the centralized control of a group of objects is impossible. Fast real-time optimal control algorithms of each of the dynamical systems are described that use information exchanged between group members in the course of control. The proposed methods supplement the earlier developed real-time optimal control methods for an individual dynamical system. The results are illustrated using optimal control of two coupled mathematical pendulums as an example.
@article{ZVMMF_2008_48_4_a4,
     author = {R. Gabasov and N. M. Dmitruk and F. M. Kirillova},
     title = {Decentralized optimal control of a~group of dynamical objects},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {593--609},
     year = {2008},
     volume = {48},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a4/}
}
TY  - JOUR
AU  - R. Gabasov
AU  - N. M. Dmitruk
AU  - F. M. Kirillova
TI  - Decentralized optimal control of a group of dynamical objects
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 593
EP  - 609
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a4/
LA  - ru
ID  - ZVMMF_2008_48_4_a4
ER  - 
%0 Journal Article
%A R. Gabasov
%A N. M. Dmitruk
%A F. M. Kirillova
%T Decentralized optimal control of a group of dynamical objects
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 593-609
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a4/
%G ru
%F ZVMMF_2008_48_4_a4
R. Gabasov; N. M. Dmitruk; F. M. Kirillova. Decentralized optimal control of a group of dynamical objects. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 593-609. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a4/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969

[2] Bellman R., Dinamicheskoe programmirovanie, Izd-vo inostr. lit., M., 1960 | MR

[3] Gabasov R., Kirillova F. M., “Printsipy optimalnogo upravleniya”, Dokl. HAH Belarusi, 48:1 (2004), 15–18 | MR

[4] Gabasov R., Kirillova F. M., Kostyukova O. I., “Postroenie optimalnykh upravlenii tipa obratnoi svyazi v lineinoi zadache”, Dokl. AN SSSR, 320:6 (1991), 1294–1299 | MR

[5] Gabasov R., Kirillova F. M., Balashevich N. V., “On the synthesis problem for optimal control systems”, SIAM J. Control Optimizat., 39:4 (2001), 1008–1042 | DOI | MR

[6] Balashevich N. V., Gabasov R., Kirillova F. M., “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zh. vychisl. matem. i matem. fiz., 40:6 (2000), 838–859 | MR | Zbl

[7] Gabasov R., Kirillova F. M., “Fast Algorithms for positional optimization of dynamic systems”, Proc. Workshop “Fast solutions of discretized optimizat, problems”, ISNM, 138, Birkhäuser Publs., Basel, 2001, 107–119 | MR | Zbl

[8] Gabasov P., Kirillova F. M., Dmitruk H. M., “Optimizatsiya mnogomernykh sistem upravleniya s parallelepipednymi ogranicheniyami”, Avtomatika i telemekhan., 2002, no. 3, 3–26 | MR | Zbl

[9] Kalyaev I. A., Gaiduk A. R., Kapustyan S. G., Raspredelennye sistemy planirovaniya deistvii kollektivov robotov, Yanus-K, M., 2002

[10] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl

[11] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya., Fizmatlit, M., 2000

[12] Dantsig Dzh., Lineinoe programmirovanie, ego primeneniya i obobscheniya, Progress, M., 1966

[13] Gabasov R., Kirillova F. M., Tyatyushkin A. I., Konstruktivnye metody optimizatsii Ch. 1. Lineinye zadachi, Universitetskoe, Minsk, 1984 | MR