Construction of hyperbolic interpolation splines
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 570-579

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of constructing a hyperbolic interpolation spline can be formulated as a differential multipoint boundary value problem. Its discretization yields a linear system with a five-diagonal matrix, which may be ill-conditioned for unequally spaced data. It is shown that this system can be split into diagonally dominant tridiagonal systems, which are solved without computing hyperbolic functions and admit effective parallelization.
@article{ZVMMF_2008_48_4_a2,
     author = {B. I. Kvasov},
     title = {Construction of hyperbolic interpolation splines},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {570--579},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a2/}
}
TY  - JOUR
AU  - B. I. Kvasov
TI  - Construction of hyperbolic interpolation splines
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 570
EP  - 579
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a2/
LA  - ru
ID  - ZVMMF_2008_48_4_a2
ER  - 
%0 Journal Article
%A B. I. Kvasov
%T Construction of hyperbolic interpolation splines
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 570-579
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a2/
%G ru
%F ZVMMF_2008_48_4_a2
B. I. Kvasov. Construction of hyperbolic interpolation splines. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 570-579. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a2/