Construction of hyperbolic interpolation splines
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 570-579 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of constructing a hyperbolic interpolation spline can be formulated as a differential multipoint boundary value problem. Its discretization yields a linear system with a five-diagonal matrix, which may be ill-conditioned for unequally spaced data. It is shown that this system can be split into diagonally dominant tridiagonal systems, which are solved without computing hyperbolic functions and admit effective parallelization.
@article{ZVMMF_2008_48_4_a2,
     author = {B. I. Kvasov},
     title = {Construction of hyperbolic interpolation splines},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {570--579},
     year = {2008},
     volume = {48},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a2/}
}
TY  - JOUR
AU  - B. I. Kvasov
TI  - Construction of hyperbolic interpolation splines
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 570
EP  - 579
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a2/
LA  - ru
ID  - ZVMMF_2008_48_4_a2
ER  - 
%0 Journal Article
%A B. I. Kvasov
%T Construction of hyperbolic interpolation splines
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 570-579
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a2/
%G ru
%F ZVMMF_2008_48_4_a2
B. I. Kvasov. Construction of hyperbolic interpolation splines. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 570-579. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a2/

[1] Kvasov B. I., Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006

[2] Schweikert D. G., “An interpolating curve using a spline in tension”, J. Math. Phys., 45 (1966), 312–317 | MR | Zbl

[3] Koch P. E., Lyche T., “Interpolation with exponential B-splines in tension”, Geometric Modelling, Computing/Supplementum, 8, Springer, Wien, 1993, 173–190 | MR | Zbl

[4] Marušić M., Rogina M., “Sharp error bounds for interpolating splines in tension”, J. Comput. Appl. Math., 61 (1995), 205–223 | MR | Zbl

[5] McCartin B. J., “Theory of exponential splines”, J. Approximation Theory, 66 (1999), 1–23 | DOI | MR

[6] Rogina M., “A deBoor type algorithm for tension splines”, Curves and Surface Fitting: Saint-Malo 2002, Nashboro Press, Brentwood, 2003, 343–352 | MR | Zbl

[7] Sapidis N. S., Kaklis P. D., “An algorithm for constructing convexity and monotonicity-preserving splines in tension”, Comput. Aided Geometric Design, 5 (1988), 127–137 | DOI | MR | Zbl

[8] Späth H., One dimensional spline interpolation algorithms, A K Peters, Massachusetts, 1995 | MR

[9] Renka R. J., “Interpolation tension splines with automatic selection of tension factors”, SIAM J. Sci. Statist. Comput., 8 (1987), 393–415 | DOI | MR | Zbl

[10] Rentrop P., “An algorithm for the computation of exponential splines”, Numer. Math., 35 (1980), 81–93 | DOI | MR | Zbl

[11] Lyulka B. A., Romanenko A. B., “Postroenie interpolyatsionnykh krivykh metodom setok”, Zh. vychisl. matem. i matem. fiz., 34:6 (1994), 826–836 | MR

[12] Lyulka V. A., Mikhailov I. E., “O postroenii interpolyatsionnykh krivykh II”, Zh. vychisl. matem. i matem. fiz., 43:10 (2003), 1448–1450 | MR

[13] Paasonen V. I., “Parallelnyi algoritm postroeniya giperbolicheskikh splainov”, Vychisl. tekhnologii. Novosibirsk: IVT SO RAN, 11:6 (2006), 87–95

[14] Costantini P., Kvasov B. I., Manni C., “On discrete hyperbolic tension splines”, Advances Comput. Math., 11 (1999), 331–354 | DOI | MR | Zbl

[15] Kvasov B. I., Methods of shape-preserving spline approximation, World Scient. Publ. Co. Pte. Ltd., Singapore, 2000 | MR | Zbl

[16] Rogina M., Sinqer S., “Conditions of matrices in discrete tension spline approximations of DMBVP”, Ann. Univ. Ferrara, 53 (2007), 393–404 | DOI | MR | Zbl

[17] Yanenko H. H., Konovalov A. H., Bugrov A. H., Shustov G. V., “Ob organizatsii parallelnykh vychislenii i “rasparallelivanii” progonki”, Chisl. metody mekhan. sploshnoi sredy. Novosibirsk, 9:7 (1978), 139–146

[18] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[19] Akima H., “A new method of interpolation and smooth curve fitting based on local procedures”, J. Assoc. Comput. Machinery, 17 (1970), 589–602 | Zbl