Construction of hyperbolic interpolation splines
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 570-579
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of constructing a hyperbolic interpolation spline can be formulated as a differential multipoint boundary value problem. Its discretization yields a linear system with a five-diagonal matrix, which may be ill-conditioned for unequally spaced data. It is shown that this system can be split into diagonally dominant tridiagonal systems, which are solved without computing hyperbolic functions and admit effective parallelization.
@article{ZVMMF_2008_48_4_a2,
author = {B. I. Kvasov},
title = {Construction of hyperbolic interpolation splines},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {570--579},
publisher = {mathdoc},
volume = {48},
number = {4},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a2/}
}
B. I. Kvasov. Construction of hyperbolic interpolation splines. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 570-579. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a2/