Fronts, traveling fronts, and their stability in the generalized Swift–Hohenberg equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 693-712
Voir la notice de l'article provenant de la source Math-Net.Ru
The generalized Swift–Hohenberg equation with an additional quadratic term is studied. Time-stable localized stationary solutions of the pulse and front types are found. It is shown that stationary fronts give rise to traveling fronts, whose branches are also obtained. This study combines theoretical methods for dynamical systems (in particular, the theory of homo-and heteroclinic orbits) and numerical simulation.
@article{ZVMMF_2008_48_4_a12,
author = {N. E. Kulagin and L. M. Lerman and T. G. Shmakova},
title = {Fronts, traveling fronts, and their stability in the generalized {Swift{\textendash}Hohenberg} equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {693--712},
publisher = {mathdoc},
volume = {48},
number = {4},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a12/}
}
TY - JOUR AU - N. E. Kulagin AU - L. M. Lerman AU - T. G. Shmakova TI - Fronts, traveling fronts, and their stability in the generalized Swift–Hohenberg equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 693 EP - 712 VL - 48 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a12/ LA - ru ID - ZVMMF_2008_48_4_a12 ER -
%0 Journal Article %A N. E. Kulagin %A L. M. Lerman %A T. G. Shmakova %T Fronts, traveling fronts, and their stability in the generalized Swift–Hohenberg equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 693-712 %V 48 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a12/ %G ru %F ZVMMF_2008_48_4_a12
N. E. Kulagin; L. M. Lerman; T. G. Shmakova. Fronts, traveling fronts, and their stability in the generalized Swift–Hohenberg equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 693-712. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a12/