Fronts, traveling fronts, and their stability in the generalized Swift–Hohenberg equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 693-712 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The generalized Swift–Hohenberg equation with an additional quadratic term is studied. Time-stable localized stationary solutions of the pulse and front types are found. It is shown that stationary fronts give rise to traveling fronts, whose branches are also obtained. This study combines theoretical methods for dynamical systems (in particular, the theory of homo-and heteroclinic orbits) and numerical simulation.
@article{ZVMMF_2008_48_4_a12,
     author = {N. E. Kulagin and L. M. Lerman and T. G. Shmakova},
     title = {Fronts, traveling fronts, and their stability in the generalized {Swift{\textendash}Hohenberg} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {693--712},
     year = {2008},
     volume = {48},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a12/}
}
TY  - JOUR
AU  - N. E. Kulagin
AU  - L. M. Lerman
AU  - T. G. Shmakova
TI  - Fronts, traveling fronts, and their stability in the generalized Swift–Hohenberg equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 693
EP  - 712
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a12/
LA  - ru
ID  - ZVMMF_2008_48_4_a12
ER  - 
%0 Journal Article
%A N. E. Kulagin
%A L. M. Lerman
%A T. G. Shmakova
%T Fronts, traveling fronts, and their stability in the generalized Swift–Hohenberg equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 693-712
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a12/
%G ru
%F ZVMMF_2008_48_4_a12
N. E. Kulagin; L. M. Lerman; T. G. Shmakova. Fronts, traveling fronts, and their stability in the generalized Swift–Hohenberg equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 693-712. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a12/

[1] Swift J., Hohenberg P. S., “Hydrodynamic fluctuations at the convective instability”, Phys. Rev. A, 15 (1977), 319–328 | DOI

[2] Aranson I. S., Gorshkov K. A., Lomov A. S., Rabinovich M. I., “Stable particle-like solutions of multidimensional nonlinear fields”, Phys. Rev. D, 43 (1990), 435–453 | MR | Zbl

[3] Glebsky L. Yu., Lerman L. M., “On small stationary localized solutions for the generalized 1-D Swift–Hohenberg equation”, Chaos, 5:2 (1995), 424–431 | DOI | MR | Zbl

[4] Belyakov L. A .,Yu L., Lerman L. M., “Abundance of stable stationary localized solutions to the generalized 1D Swift–Hohenberg equation”, Computers Math. Appl., 34 (1997), 253–266 | DOI | MR | Zbl

[5] Glebsky L.Yu., Lerman L. M., “Instability of small stationary localized solutions to a class of reversible $1+1$ PDEs”, Nonlinearity, 10:2 (1997), 389–407 | DOI | MR | Zbl

[6] Eckhaus W., Studies in nonlinear stability theory, Springer, N.Y., 1965 | MR | Zbl

[7] Collet P., Eckmann J.-P., Instabilities and fronts in extended system, Princeton Univ. Press, Princeton N.J., 1990 | MR | Zbl

[8] Haken H., Advanced synergetics, Springer, Berlin, N.Y., 1983 | MR

[9] Hilali M. F., Métens S., Borckmans P., Dewel G., “Pattern selection in the generalized Swift–Hohenberg model”, Phys. Rev. E, 51:3 (1995), 2046–2052 | DOI

[10] Tlidi M., Georgiou M., Mandel P., “Transverse patterns in nancsent optical bistability”, Phys. Rev., 48:5 (1993), 4605–4609

[11] Lega J., Moloney J. V., Newell A., “Swift-Hohenberg equation for lasers”, Phys. Rev. Letts, 73 (1994), 2978–2981 | DOI

[12] Coullet P., “Localized patterns and fronts in nonequilibrium systems”, Intern. J. Bifurcation and Chaos, 12:11 (2002), 2445–2457 | DOI | MR | Zbl

[13] Eckmann J.-P., Wayne C. E., “Propagating fronts and the center manifold theorem”, Communs Math. Phys., 136 (1991), 285–307 | DOI | MR | Zbl

[14] Eckmann J.-P., Rougemont J., “Coarsening by Grinzburg-Landau dynamics”, Communs Math. Phys., 199 (1998), 441–470 | DOI | MR | Zbl

[15] Arnold V. I., Kozlov V. V., Neishtadt A. I., “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Sovrem. probl. matem. Fundamentalnye napravleniya, 3, VINITI AN SSSR, M., 1985, 5–290 | MR

[16] Sevryuk M. B., Reversible systems, Lect. Notes in Math., 1211, Springer, N.Y. etc., 1986 | MR | Zbl

[17] Khartman F., Obyknovennye differentsialnye uravneniya, Nauka, M., 1973

[18] Lerman L. M., “Homo- and heteroclinic orbits, hyperbolic subsets in a one-parameter unfolding of a Hamiltonian system with two saddle-foci”, Regul. Chaotic. Dyn., 2:3 (1997), 139–155 | MR | Zbl

[19] Kalies W. D., Kwapisz J., Wander Vorst R. C. A. M., “Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria”, Communs Math. Phys., 193 (1998), 337–371 | DOI | MR | Zbl

[20] Smets D., van der Berg J. B., “Homoclinic solutions for Swift–Hohenberg and suspended bridge type equations”, J. Differential Equat., 184 (2002), 78–96 | DOI | MR | Zbl

[21] Lerman L. M., “On the structure and bifurcations in a one-parameter unfolding of a 2 d.o.f. Hamiltonian system with a control with two saddle-foci”, “EquaDiff99”. Proc. Internat. Conf. Different. Equat., World Sci., Singapore, 2000, 61–63 | MR | Zbl

[22] Melnikov B. K., “Ob ustoichivosti tsentra pri periodicheskikh po vremeni vozmuscheniyakh”, Tr. MMO, 12, 1963, 3–52 | MR

[23] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[24] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[25] Kato T., Perturbation theory for linear operators, Springer, Berlin etc., 1966

[26] Eleonskii V. M., Kirova H. H., Kulagin N. E., “O sluchainom vyrozhdenii samolokalizovannykh reshenii uravnenii Landau–Lifshitsa”, Zh. eksperim. i teor. fiz., 74:6(12) (1978), 2210–2219

[27] Shalashilin V. I., Kuznetsov E. B., Metod prodolzheniya po parametru i nailuchshaya parametrizatsiya, Editorial URSS, M., 1999 | MR

[28] Kellr H. B., “Global homotopies and Newton's methods”, Rec. Adv. Numer. Analys., Acad. Press, N.Y., London, 1978, 73–94 | MR