@article{ZVMMF_2008_48_4_a12,
author = {N. E. Kulagin and L. M. Lerman and T. G. Shmakova},
title = {Fronts, traveling fronts, and their stability in the generalized {Swift{\textendash}Hohenberg} equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {693--712},
year = {2008},
volume = {48},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a12/}
}
TY - JOUR AU - N. E. Kulagin AU - L. M. Lerman AU - T. G. Shmakova TI - Fronts, traveling fronts, and their stability in the generalized Swift–Hohenberg equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 693 EP - 712 VL - 48 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a12/ LA - ru ID - ZVMMF_2008_48_4_a12 ER -
%0 Journal Article %A N. E. Kulagin %A L. M. Lerman %A T. G. Shmakova %T Fronts, traveling fronts, and their stability in the generalized Swift–Hohenberg equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 693-712 %V 48 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a12/ %G ru %F ZVMMF_2008_48_4_a12
N. E. Kulagin; L. M. Lerman; T. G. Shmakova. Fronts, traveling fronts, and their stability in the generalized Swift–Hohenberg equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 693-712. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a12/
[1] Swift J., Hohenberg P. S., “Hydrodynamic fluctuations at the convective instability”, Phys. Rev. A, 15 (1977), 319–328 | DOI
[2] Aranson I. S., Gorshkov K. A., Lomov A. S., Rabinovich M. I., “Stable particle-like solutions of multidimensional nonlinear fields”, Phys. Rev. D, 43 (1990), 435–453 | MR | Zbl
[3] Glebsky L. Yu., Lerman L. M., “On small stationary localized solutions for the generalized 1-D Swift–Hohenberg equation”, Chaos, 5:2 (1995), 424–431 | DOI | MR | Zbl
[4] Belyakov L. A .,Yu L., Lerman L. M., “Abundance of stable stationary localized solutions to the generalized 1D Swift–Hohenberg equation”, Computers Math. Appl., 34 (1997), 253–266 | DOI | MR | Zbl
[5] Glebsky L.Yu., Lerman L. M., “Instability of small stationary localized solutions to a class of reversible $1+1$ PDEs”, Nonlinearity, 10:2 (1997), 389–407 | DOI | MR | Zbl
[6] Eckhaus W., Studies in nonlinear stability theory, Springer, N.Y., 1965 | MR | Zbl
[7] Collet P., Eckmann J.-P., Instabilities and fronts in extended system, Princeton Univ. Press, Princeton N.J., 1990 | MR | Zbl
[8] Haken H., Advanced synergetics, Springer, Berlin, N.Y., 1983 | MR
[9] Hilali M. F., Métens S., Borckmans P., Dewel G., “Pattern selection in the generalized Swift–Hohenberg model”, Phys. Rev. E, 51:3 (1995), 2046–2052 | DOI
[10] Tlidi M., Georgiou M., Mandel P., “Transverse patterns in nancsent optical bistability”, Phys. Rev., 48:5 (1993), 4605–4609
[11] Lega J., Moloney J. V., Newell A., “Swift-Hohenberg equation for lasers”, Phys. Rev. Letts, 73 (1994), 2978–2981 | DOI
[12] Coullet P., “Localized patterns and fronts in nonequilibrium systems”, Intern. J. Bifurcation and Chaos, 12:11 (2002), 2445–2457 | DOI | MR | Zbl
[13] Eckmann J.-P., Wayne C. E., “Propagating fronts and the center manifold theorem”, Communs Math. Phys., 136 (1991), 285–307 | DOI | MR | Zbl
[14] Eckmann J.-P., Rougemont J., “Coarsening by Grinzburg-Landau dynamics”, Communs Math. Phys., 199 (1998), 441–470 | DOI | MR | Zbl
[15] Arnold V. I., Kozlov V. V., Neishtadt A. I., “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Sovrem. probl. matem. Fundamentalnye napravleniya, 3, VINITI AN SSSR, M., 1985, 5–290 | MR
[16] Sevryuk M. B., Reversible systems, Lect. Notes in Math., 1211, Springer, N.Y. etc., 1986 | MR | Zbl
[17] Khartman F., Obyknovennye differentsialnye uravneniya, Nauka, M., 1973
[18] Lerman L. M., “Homo- and heteroclinic orbits, hyperbolic subsets in a one-parameter unfolding of a Hamiltonian system with two saddle-foci”, Regul. Chaotic. Dyn., 2:3 (1997), 139–155 | MR | Zbl
[19] Kalies W. D., Kwapisz J., Wander Vorst R. C. A. M., “Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria”, Communs Math. Phys., 193 (1998), 337–371 | DOI | MR | Zbl
[20] Smets D., van der Berg J. B., “Homoclinic solutions for Swift–Hohenberg and suspended bridge type equations”, J. Differential Equat., 184 (2002), 78–96 | DOI | MR | Zbl
[21] Lerman L. M., “On the structure and bifurcations in a one-parameter unfolding of a 2 d.o.f. Hamiltonian system with a control with two saddle-foci”, “EquaDiff99”. Proc. Internat. Conf. Different. Equat., World Sci., Singapore, 2000, 61–63 | MR | Zbl
[22] Melnikov B. K., “Ob ustoichivosti tsentra pri periodicheskikh po vremeni vozmuscheniyakh”, Tr. MMO, 12, 1963, 3–52 | MR
[23] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR
[24] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR
[25] Kato T., Perturbation theory for linear operators, Springer, Berlin etc., 1966
[26] Eleonskii V. M., Kirova H. H., Kulagin N. E., “O sluchainom vyrozhdenii samolokalizovannykh reshenii uravnenii Landau–Lifshitsa”, Zh. eksperim. i teor. fiz., 74:6(12) (1978), 2210–2219
[27] Shalashilin V. I., Kuznetsov E. B., Metod prodolzheniya po parametru i nailuchshaya parametrizatsiya, Editorial URSS, M., 1999 | MR
[28] Kellr H. B., “Global homotopies and Newton's methods”, Rec. Adv. Numer. Analys., Acad. Press, N.Y., London, 1978, 73–94 | MR