Analytical solutions to the heat conduction problems for a cylinder and a ball based on determining the temperature perturbation front
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 681-692 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Analytical solutions to the heat conduction problems for a cylinder and a ball are obtained by the integral method of heat balance. To improve the accuracy of the solutions, the temperature function is approximated by polynomials of high degrees. Their coefficients are determined via introducing additional boundary conditions, which are found from the governing differential equation and the basic boundary conditions, including those specified at the temperature perturbation front. It is shown that the additional boundary conditions, even in the second approximation, lead to a considerable improvement in the solution accuracy.
@article{ZVMMF_2008_48_4_a11,
     author = {M. S. Antimonov and V. A. Kudinov and E. V. Stefanyuk},
     title = {Analytical solutions to the heat conduction problems for a~cylinder and a~ball based on determining the temperature perturbation front},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {681--692},
     year = {2008},
     volume = {48},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a11/}
}
TY  - JOUR
AU  - M. S. Antimonov
AU  - V. A. Kudinov
AU  - E. V. Stefanyuk
TI  - Analytical solutions to the heat conduction problems for a cylinder and a ball based on determining the temperature perturbation front
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 681
EP  - 692
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a11/
LA  - ru
ID  - ZVMMF_2008_48_4_a11
ER  - 
%0 Journal Article
%A M. S. Antimonov
%A V. A. Kudinov
%A E. V. Stefanyuk
%T Analytical solutions to the heat conduction problems for a cylinder and a ball based on determining the temperature perturbation front
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 681-692
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a11/
%G ru
%F ZVMMF_2008_48_4_a11
M. S. Antimonov; V. A. Kudinov; E. V. Stefanyuk. Analytical solutions to the heat conduction problems for a cylinder and a ball based on determining the temperature perturbation front. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 681-692. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a11/

[1] Gudmen T., “Primenenie integralnykh metodov v nelineinykh zadachakh nestatsionarnogo teploobmena”, Problemy teploobmena, Atomizdat, M., 1967, 41–96

[2] Postolnik Yu. S., “Metod osredneniya funktsionalnykh popravok v zadachakh teploprovodnosti”, Teplo- i massoperenos, v. 8, Universitetskoe, Minsk, 1972, 23–29

[3] Shvets M. E., “O priblizhennom reshenii nekotorykh zadach gidrodinamiki pogranichnogo sloya”, Prikl. matem. i mekhan., 13:3 (1949)

[4] Bio M., Variatsionnye printsipy v teorii teploobmena, Energiya, M., 1975 | Zbl

[5] Veinik A. I., Priblizhennye raschety protsessov teploprovodnosti, Gosenergoizdat, M., L., 1959

[6] Muchnik G. F., Rubashov Ya. B., Metody teorii teploobmena, Vyssh. shkola, M., 1970

[7] Belyaev N. M., Ryadno A. A., Metody nestatsionarnoi teploprovodnosti. Uch. posobie dlya vuzov, Vyssh. shk., M., 1978

[8] Kartashov E. M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel, Vyssh. shk., M., 2001

[9] Lykov A. B., Teoriya teploprovodnosti, Vyssh. shk., M., 1967 | Zbl

[10] Kudinov V. A., “Metod koordinatnykh funktsii v nestatsionarnykh zadachakh teploprovodnosti. Obzor”, Izv. RAN. Energetika, 2004, no. 3, 84–107

[11] Kudinov V. A., Kartashov E. M., Kalashnikov V. V., Analiticheskie resheniya zadach teplomassoperenosa i termouprugosti dlya mnogosloinykh konstruktsii. Ucheb. posobie dlya vuzov, Vyssh. shk., M., 2005