Linear interval equations with symmetric solution sets
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 562-569 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Criteria for symmetry and boundedness are found for the combined solution set of a system of linear algebraic equations with interval coefficients. It is shown that the problem of the best inner interval estimation of a symmetric solution set can be exactly solved by linear programming methods.
@article{ZVMMF_2008_48_4_a1,
     author = {L. T. Ashchepkov},
     title = {Linear interval equations with symmetric solution sets},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {562--569},
     year = {2008},
     volume = {48},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a1/}
}
TY  - JOUR
AU  - L. T. Ashchepkov
TI  - Linear interval equations with symmetric solution sets
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 562
EP  - 569
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a1/
LA  - ru
ID  - ZVMMF_2008_48_4_a1
ER  - 
%0 Journal Article
%A L. T. Ashchepkov
%T Linear interval equations with symmetric solution sets
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 562-569
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a1/
%G ru
%F ZVMMF_2008_48_4_a1
L. T. Ashchepkov. Linear interval equations with symmetric solution sets. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 562-569. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a1/

[1] Sharyi S. P., Intervalnye algebraicheskie zadachi i ikh chislennoe reshenie, Dis. $\dots$ d-ra fiz.-matem. nauk, VTs SO RAN, Novosibirsk, 2000, 322 pp.

[2] Jaussern C., “Calculation of exact bounds for the solution set of linear interval systems”, Linear Algebra and its Applic., 251 (1997), 321–340 | DOI | MR

[3] Poljak S., Rohn J., “Cheking robust nonsingularity is NP-hard”, Math. of Control Signals and Systems, 6 (1993), 1–9 | DOI | MR | Zbl

[4] Rohn J., Kreinovich V., “Computing exact componentwise bounds on solutions of linear systems with interval data is NP-hard”, SIAM J. Matr. Analys. Appl., 6 (1995), 415–420 | DOI | MR

[5] Oettli W., Prager W., “Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides”, Numer. Math., 6 (1964), 405–409 | DOI | MR | Zbl

[6] Aschepkov L. T., “O postroenii maksimalnogo kuba, vpisannogo v zadannuyu oblast”, Zh. vychisl. matem. i matem. fiz., 30:2 (1980), 510–513

[7] Aschepkov L. T., Badam U., Modeli i metody povysheniya zhivuchesti upravlyaemykh sistem, Dalnauka, Vladivostok, 2006