Iterative processes based on block $H$-splittings
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 539-561 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Block $H$-splittings of block square matrices (which, in general, have complex entries) are examined. It is shown that block $H$-matrices are the only ones that admit this type of splittings. Iterative processes corresponding to these splittings are proved to be convergent. The concept of a simple splitting of a block matrix is introduced, and the convergence of iterative processes related to simple splittings of block $H$-matrices is investigated. Multisplitting and nonstationary iterative processes based on block $H$-splittings are considered. Sufficient conditions for their convergence are derived, and some estimates for the asymptotic convergence rate are given.
@article{ZVMMF_2008_48_4_a0,
     author = {A. A. Maleev},
     title = {Iterative processes based on block $H$-splittings},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {539--561},
     year = {2008},
     volume = {48},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a0/}
}
TY  - JOUR
AU  - A. A. Maleev
TI  - Iterative processes based on block $H$-splittings
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 539
EP  - 561
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a0/
LA  - ru
ID  - ZVMMF_2008_48_4_a0
ER  - 
%0 Journal Article
%A A. A. Maleev
%T Iterative processes based on block $H$-splittings
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 539-561
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a0/
%G ru
%F ZVMMF_2008_48_4_a0
A. A. Maleev. Iterative processes based on block $H$-splittings. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 4, pp. 539-561. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_4_a0/

[1] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1960 | MR

[2] Frommer A., Szyld D. B., “$H$-Splittings and two-stage iterative methods”, Numer. Math., 63 (1992), 345–356 | DOI | MR | Zbl

[3] Mayer G., “Comparision for iterative methods based on strong splittings”, SIAM J. Numer. Analys., 24 (1987), 215–227 | DOI | MR | Zbl

[4] Maleev A. A., O skhodimosti iteratsii, osnovannykh na rasschepleniyakh $H$-matrits, Preprint No 138, RFYaTs-VNIITF, Snezhinsk, 1999, 17 pp.

[5] Bru R., Migallion V., Penades J., Szyld D. B., “Parallel, synchronous and asynchronous two-stage multisplitting methods”, Elect. Trans. Numer. Analys., 3 (1995), 24–38 | MR | Zbl

[6] Wang C. L., You Z. Y., “$H$-Splittings and asynchronous parallel iterative methods”, J. Comput. Math., 15:2 (1997), 97–104 | MR | Zbl

[7] Ostrowski A. M., “On some metrical properties of operator matrices and matrices partitioned into blocks”, J. Math. Analys. and Appl., 2:2 (1961), 161–209 | DOI | MR | Zbl

[8] Robert F., “Blocs $H$-matrices et convergence des methodes iteratives classiques par blocs”, Linear Algebra and Appl., 2 (1969), 223–265 | DOI | MR | Zbl

[9] Polman B., “Incoplete block wise factorization of (block) $H$-matrices”, Linear Algebra and Appl., 90 (1987), 119–132 | DOI | MR | Zbl

[10] Varga R., Matrix iterative analysis, Prentice Hall, Englewood Cliffs, New Jersy, 1962 | MR

[11] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[12] Khori R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[13] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravneniya so mnogimi neizvestnymi, Mir, M., 1975 | MR

[14] O'Learv D. P., White R. F., “Multi-splittings of matrices and parallel solution of linear systems”, SIAM J. Algebra and Discrete Meth., 6 (1985), 630–640 | DOI | MR

[15] Neumann M., Plemmons R. J., “Convergence of parallel multisplittincs iterative methods for $M$-matrices”, Linear Algebra and Appl., 88–89 (1987), 559–573 | DOI | MR | Zbl