Finite-difference method for the Navier–Stokes equations in a variable domain with curved boundaries
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 491-504 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A semi-implicit finite-difference scheme is proposed for solving the nonlinear viscous compressible Navier–Stokes equations. Coordinate transformations are constructed that yield a uniform mesh in the computational plane even though the physical domain under consideration is time-varying and curvilinear. The finite-difference scheme was tested using model examples.
@article{ZVMMF_2008_48_3_a9,
     author = {A. B. Usov},
     title = {Finite-difference method for the {Navier{\textendash}Stokes} equations in a~variable domain with curved boundaries},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {491--504},
     year = {2008},
     volume = {48},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a9/}
}
TY  - JOUR
AU  - A. B. Usov
TI  - Finite-difference method for the Navier–Stokes equations in a variable domain with curved boundaries
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 491
EP  - 504
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a9/
LA  - ru
ID  - ZVMMF_2008_48_3_a9
ER  - 
%0 Journal Article
%A A. B. Usov
%T Finite-difference method for the Navier–Stokes equations in a variable domain with curved boundaries
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 491-504
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a9/
%G ru
%F ZVMMF_2008_48_3_a9
A. B. Usov. Finite-difference method for the Navier–Stokes equations in a variable domain with curved boundaries. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 491-504. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a9/

[1] Anderson D., Tannekhill Dzh., Pletner R., Vychislitelnaya gidromekhanika i teploobmen, v. T. 1, 2, Mir, M., 1990 | Zbl

[2] Babaev I. Yu., Bashkin V. A., Egorov I. V., “Chislennoe reshenie uravnenii Nave–Stoksa s ispolzovaniem iteratsionnykh metodov variatsionnogo tipa”, Zh. vychisl. matem. i matem. fiz., 34:11 (1994), 1693–1703 | MR | Zbl

[3] Bim P. M., Uorming R. F., “Neyavnaya faktorizovannaya raznostnaya skhema dlya uravneniya Nave–Stoksa szhimaemogo gaza”, Raketnaya tekhn. i kosmonavtika, 16:4 (1978), 145–156

[4] Brailovskaya I. Yu., “Raznostnaya skhema dlya chislennogo resheniya dvumernykh nestatsionarnykh uravnenii Nave–Stoksa dlya szhimaemogo gaza”, Dokl. AN SSSR, 160:5 (1965), 1042–1045

[5] Bubenchikov A. M., Firsov D. K., “Raznostnaya skhema dlya integrirovaniya uravnenii Nave–Stoksa neszhimaemoi zhidkosti na neraznesennoi neortogonalnoi setke”, Vest. Tomskogo un-ta, 2001, no. 4, 5–22

[6] Godunov S. K., Ryabenkii B. C., Raznostnye skhemy. Vvedenie v teoriyu, Nauka, M., 1977 | MR

[7] Makkormak R. V., “Chislennyi metod resheniya uravnenii vyazkikh techenii”, Aerokosmich. tekhn., 1:4 (1983), 114–123

[8] Potter L., Vychislitelnye metody v fizike, Mir, M., 1975

[9] Skurin L. I., “Parallelnaya skhema iteratsionno-marshevogo metoda integrirovaniya uravnenii Nave–Stoksa”, Vestn. SPbU. Ser. 1, 2004, no. 25, 107–110

[10] Fletner K., Vychislitelnye metody v dinamike zhidkostei, v. 2, Mir, M., 1991

[11] O. M. Belotserkovskii (red.), Chislennoe issledovanie sovremennykh zadach gazovoi dinamiki, Nauka, VTs AN SSSR, M., 1974

[12] Yanenko H. H., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[13] Allen J. S., Cheng S. I., “Numerical solutions of the compressible Navier–Stokes equations for the laminar near wake”, Phys. Fluids, 13 (1970), 37–52 | DOI | Zbl

[14] Lax P. D., Wendroff B., “Systems of conservation laws”, Communs. Pure and Appl. Math., 13 (1960), 213–237 | MR

[15] Rossow C. C., “A flux-splitting scheme for compressible and in compressible flows”, J. Comput. Phys., 164:1 (2000), 104–122 | DOI | MR | Zbl

[16] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1970 | MR

[17] Eisemann P. R., “A multi-surface method of coordinate generation”, J. Comput. Phys., 33:1 (1979), 118–150 | DOI | MR

[18] Lisitsa V. V., “Optimalnye setki dlya resheniya volnovogo uravneniya s peremennymi koeffitsientami”, Sibirskii zhurnal vychisl. matem., 8:3 (2005), 219–229 | Zbl

[19] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[20] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1953

[21] Usov A. B., “Asimptotiki techeniya vyazkoi szhimaemoi zhidkosti pri razryvnykh nachalnykh dannykh”, Prikl. mekhan. i tekhn. fiz., 44:2 (2003), 63–71 | MR | Zbl