Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 445-472
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              Criteria (necessary and sufficient conditions) for the Petrovskii parabolicity of the quasi-gasdynamic system of equations with an improved description of heat conduction are derived. A modified quasi-gasdynamic system containing second derivatives with respect to both spatial and time variables is proposed. Necessary and sufficient conditions for its hyperbolicity are deduced. For both systems, the stability of small perturbations against a constant background is analyzed and estimates that are uniform on an infinite time interval are given for relative perturbations in the Cauchy problem and the initial-boundary value problem for the corresponding linearized systems. Similar results are also established in the barotropic case with the general equation of state $p=p(\rho)$.
            
            
            
          
        
      @article{ZVMMF_2008_48_3_a7,
     author = {A. A. Zlotnik and B. N. Chetverushkin},
     title = {Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {445--472},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a7/}
}
                      
                      
                    TY - JOUR AU - A. A. Zlotnik AU - B. N. Chetverushkin TI - Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 445 EP - 472 VL - 48 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a7/ LA - ru ID - ZVMMF_2008_48_3_a7 ER -
%0 Journal Article %A A. A. Zlotnik %A B. N. Chetverushkin %T Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 445-472 %V 48 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a7/ %G ru %F ZVMMF_2008_48_3_a7
A. A. Zlotnik; B. N. Chetverushkin. Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 445-472. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a7/
