Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 445-472 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Criteria (necessary and sufficient conditions) for the Petrovskii parabolicity of the quasi-gasdynamic system of equations with an improved description of heat conduction are derived. A modified quasi-gasdynamic system containing second derivatives with respect to both spatial and time variables is proposed. Necessary and sufficient conditions for its hyperbolicity are deduced. For both systems, the stability of small perturbations against a constant background is analyzed and estimates that are uniform on an infinite time interval are given for relative perturbations in the Cauchy problem and the initial-boundary value problem for the corresponding linearized systems. Similar results are also established in the barotropic case with the general equation of state $p=p(\rho)$.
@article{ZVMMF_2008_48_3_a7,
     author = {A. A. Zlotnik and B. N. Chetverushkin},
     title = {Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {445--472},
     year = {2008},
     volume = {48},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a7/}
}
TY  - JOUR
AU  - A. A. Zlotnik
AU  - B. N. Chetverushkin
TI  - Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 445
EP  - 472
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a7/
LA  - ru
ID  - ZVMMF_2008_48_3_a7
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%A B. N. Chetverushkin
%T Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 445-472
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a7/
%G ru
%F ZVMMF_2008_48_3_a7
A. A. Zlotnik; B. N. Chetverushkin. Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 445-472. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a7/

[1] Chetverushkin B. N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, MAKS Press, M., 2004

[2] Succi S., The lattice Boltzmann equation in fluid dynamics and beyond, Clarendon Press, Oxford, 2001 | MR | Zbl

[3] Tsutakara M., Takada N., Kataoka N., Lattice gas and Lattice Boltzmann methods – new methods of computational fluid dynamics, Corona Publishing, Tokyo, 1999 (in Japanese)

[4] Chetverushkin B. N., Romanyukha N. Yu., “Kinetic and lattice Boltzmann schemes”, Parallel Comput. Fluid Dynamics. Multidisciplinary Applic., Elsevier, Amsterdam, 2005, 257–262 | MR

[5] Elizarova T. T., Matematicheskie modeli i chislennye metody v dinamike zhidkosti i gaza, MGU, M., 2005

[6] Sheretov Yu. V., Matematicheskoe modelirovanie techenii zhidkosti i gaza na osnove kvazigidrodinamicheskikh i kvazigazodinamicheskikh uravnenii, Tverskoi GU, Tver, 2000

[7] Zlotnik A. A., “Klassifikatsiya nekotorykh modifikatsii sistemy uravnenii Eilera”, Dokl. RAN, 407:6 (2006), 747–751 | MR

[8] Alekseev B. V., “Fizicheskie osnovy obobschennoi boltsmanovskoi teorii gazov”, Uspekhi fiz. nauk, 170:6 (2000), 649–679 | DOI

[9] Dorodnitsyn L. V., “Ob ustoichivosti malykh kolebanii v kvazigazodinamicheskoi sisteme uravnenii”, Zh. vychisl. matem. i matem. fiz., 44:7 (2004), 1299–1305 | MR | Zbl

[10] Zlotnik A. A., Zlotnik I. A., “Kriterii ustoichivosti malykh vozmuschenii dlya kvazigazodinamicheskoi sistemy uravnenii”, Zh. vychisl. matem. i matem. fiz., 46:2 (2006), 262–269 | MR | Zbl

[11] Zlotnik A. A., “O parabolichnosti kvazigidrodinamicheskoi sistemy uravnenii i ustoichivosti malykh vozmuschenii dlya nee”, Matem. zametki, 83:5 (2008), 667–682 | MR | Zbl

[12] Vlasov A. A., Statisticheskie funktsii raspredeleniya, Nauka, M., 1966 | MR | Zbl

[13] Petrovskii I. G., Izbrannye trudy. Sistemy uravnenii s chastnymi proizvodnymi. Algebraicheskaya geometriya, Nauka, M., 1986 | MR

[14] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Fizmatlit, M., 1961 | MR

[15] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR

[16] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[17] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR