Optimal first- to sixth-order accurate Runge–Kutta schemes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 418-429

Voir la notice de l'article provenant de la source Math-Net.Ru

An optimal choice of free parameters in explicit Runge–Kutta schemes up to the sixth order is discussed. A sixth-order seven-stage scheme that is immediately ahead of Butcher's second barrier is constructed. The study is performed in the most general form, and its results are applicable to both autonomous and nonautonomous problems.
@article{ZVMMF_2008_48_3_a5,
     author = {E. A. Alshina and E. M. Zaks and N. N. Kalitkin},
     title = {Optimal first- to sixth-order accurate {Runge{\textendash}Kutta} schemes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {418--429},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a5/}
}
TY  - JOUR
AU  - E. A. Alshina
AU  - E. M. Zaks
AU  - N. N. Kalitkin
TI  - Optimal first- to sixth-order accurate Runge–Kutta schemes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 418
EP  - 429
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a5/
LA  - ru
ID  - ZVMMF_2008_48_3_a5
ER  - 
%0 Journal Article
%A E. A. Alshina
%A E. M. Zaks
%A N. N. Kalitkin
%T Optimal first- to sixth-order accurate Runge–Kutta schemes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 418-429
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a5/
%G ru
%F ZVMMF_2008_48_3_a5
E. A. Alshina; E. M. Zaks; N. N. Kalitkin. Optimal first- to sixth-order accurate Runge–Kutta schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 418-429. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a5/