Optimal first- to sixth-order accurate Runge–Kutta schemes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 418-429 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An optimal choice of free parameters in explicit Runge–Kutta schemes up to the sixth order is discussed. A sixth-order seven-stage scheme that is immediately ahead of Butcher's second barrier is constructed. The study is performed in the most general form, and its results are applicable to both autonomous and nonautonomous problems.
@article{ZVMMF_2008_48_3_a5,
     author = {E. A. Alshina and E. M. Zaks and N. N. Kalitkin},
     title = {Optimal first- to sixth-order accurate {Runge{\textendash}Kutta} schemes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {418--429},
     year = {2008},
     volume = {48},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a5/}
}
TY  - JOUR
AU  - E. A. Alshina
AU  - E. M. Zaks
AU  - N. N. Kalitkin
TI  - Optimal first- to sixth-order accurate Runge–Kutta schemes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 418
EP  - 429
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a5/
LA  - ru
ID  - ZVMMF_2008_48_3_a5
ER  - 
%0 Journal Article
%A E. A. Alshina
%A E. M. Zaks
%A N. N. Kalitkin
%T Optimal first- to sixth-order accurate Runge–Kutta schemes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 418-429
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a5/
%G ru
%F ZVMMF_2008_48_3_a5
E. A. Alshina; E. M. Zaks; N. N. Kalitkin. Optimal first- to sixth-order accurate Runge–Kutta schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 418-429. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a5/

[1] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[2] Butchern J. C., “Coefficients for study of Runge–Kutta integration processes”, J. Austral. Math. Soc., 3 (1963), 185–201 | DOI | MR

[3] Khammud G. M., “Trekhmernoe semeistvo 7-shagovykh metodov Runge–Kutta poryadka 6”, Vychisl. metody i programmirovanie, 2:2 (2001), 71–78

[4] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR

[5] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[6] Kalitkin H. H., Alshin A. B., Alshina E. A., Rogov B. V., Vychisleniya na kvaziravnomernykh setkakh, Fizmatlit, M., 2005