Optimal first- to sixth-order accurate Runge–Kutta schemes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 418-429
Voir la notice de l'article provenant de la source Math-Net.Ru
An optimal choice of free parameters in explicit Runge–Kutta schemes up to the sixth order is discussed. A sixth-order seven-stage scheme that is immediately ahead of Butcher's second barrier is constructed. The study is performed in the most general form, and its results are applicable to both autonomous and nonautonomous problems.
@article{ZVMMF_2008_48_3_a5,
author = {E. A. Alshina and E. M. Zaks and N. N. Kalitkin},
title = {Optimal first- to sixth-order accurate {Runge{\textendash}Kutta} schemes},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {418--429},
publisher = {mathdoc},
volume = {48},
number = {3},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a5/}
}
TY - JOUR AU - E. A. Alshina AU - E. M. Zaks AU - N. N. Kalitkin TI - Optimal first- to sixth-order accurate Runge–Kutta schemes JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2008 SP - 418 EP - 429 VL - 48 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a5/ LA - ru ID - ZVMMF_2008_48_3_a5 ER -
%0 Journal Article %A E. A. Alshina %A E. M. Zaks %A N. N. Kalitkin %T Optimal first- to sixth-order accurate Runge–Kutta schemes %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2008 %P 418-429 %V 48 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a5/ %G ru %F ZVMMF_2008_48_3_a5
E. A. Alshina; E. M. Zaks; N. N. Kalitkin. Optimal first- to sixth-order accurate Runge–Kutta schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 418-429. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a5/