Projection onto polyhedra in outer representation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 387-396 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The projection of the origin onto an $n$-dimensional polyhedron defined by a system of $m$ inequalities is reduced to a sequence of projection problems onto a one-parameter family of shifts of a polyhedron with at most $m+1$ vertices in $n+1$ dimensions. The problem under study is transformed into the projection onto a convex polyhedral cone with m extreme rays, which considerably simplifies the solution to an equivalent problem and reduces it to a single projection operation. Numerical results obtained for random polyhedra of high dimensions are presented.
@article{ZVMMF_2008_48_3_a3,
     author = {E. A. Nurminski},
     title = {Projection onto polyhedra in outer representation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {387--396},
     year = {2008},
     volume = {48},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a3/}
}
TY  - JOUR
AU  - E. A. Nurminski
TI  - Projection onto polyhedra in outer representation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 387
EP  - 396
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a3/
LA  - ru
ID  - ZVMMF_2008_48_3_a3
ER  - 
%0 Journal Article
%A E. A. Nurminski
%T Projection onto polyhedra in outer representation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 387-396
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a3/
%G ru
%F ZVMMF_2008_48_3_a3
E. A. Nurminski. Projection onto polyhedra in outer representation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 387-396. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a3/

[1] Nurminskii E. A., “Metod posledovatelnykh proektsii dlya resheniya zadachi o naimenshem rasstoyanii dlya simpleksov”, Elektronnyi zhurnal “Issledovano v Rossii”, 160 (2004), 1732–1739 http://zhurnal.ape.relarn.ru/articles/2004/160.pdf

[2] Nurminskii E. A., “Metod podkhodyaschikh affinnykh podprostranstv dlya resheniya zadachi proektsii na simpleks”, Zh. vychisl. matem. i matem. fiz., 45:11 (2005), 1996–2004 | MR

[3] Nurminskii E. A., “Uskorenie iterativnykh metodov proektsii na mnogogrannik”, Dalnevostochnyi matem. sb., 1995, no. 1, 51–62

[4] Lemarechal C., Hiriat-Urruty J.-B., Convex analysis and minimization algorithms, v. II, Grundlehren der mathematischen Wissenschaften, 306, Advanced theory and bundle methods, Springer, Berlin, 1993, 346 pp. | MR | Zbl

[5] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990 | MR

[6] Kozlov M. A., Tarasov S. P., Khachiyan L. G., “Polinomialnaya razreshimost vypuklogo kvadratichnogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 20:5 (1980), 1319–1323 | MR | Zbl

[7] Octave [Elektronnyi resurs] – Rezhim dostupa: svobodnyi http://www.octave.org

[8] ILOG CPLEX [Elektronnyi resurs] – Rezhim dostupa: svobodnyi http://www.ilog.com/ products/cplex/