Investigation of variational problems by direct methods
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 373-386 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A direct method is proposed for solving variational problems in which an extremal is represented by an infinite series in terms of a complete system of basis functions. Taking into account the boundary conditions gives all the necessary conditions of the classical calculus of variations, that is, the Euler–Lagrange equations, transversality conditions, Erdmann–Weierstrass conditions, etc. The penalty function method reduces conditional extremum problems to variational ones in which the isoperimetric conditions described by constraint equations are taken into account by Lagrangian multipliers. The direct method proposed is applied to functionals depending on functions of one or two variables.
@article{ZVMMF_2008_48_3_a2,
     author = {V. G. Butov},
     title = {Investigation of variational problems by direct methods},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {373--386},
     year = {2008},
     volume = {48},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a2/}
}
TY  - JOUR
AU  - V. G. Butov
TI  - Investigation of variational problems by direct methods
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2008
SP  - 373
EP  - 386
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a2/
LA  - ru
ID  - ZVMMF_2008_48_3_a2
ER  - 
%0 Journal Article
%A V. G. Butov
%T Investigation of variational problems by direct methods
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2008
%P 373-386
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a2/
%G ru
%F ZVMMF_2008_48_3_a2
V. G. Butov. Investigation of variational problems by direct methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 48 (2008) no. 3, pp. 373-386. http://geodesic.mathdoc.fr/item/ZVMMF_2008_48_3_a2/

[1] Smirnov V. I., Kurs vysshei matematiki, v. IV, Nauka, M., 1974 | MR

[2] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[3] Butov V. G., Vasenin I. M., Shelukha A. I., “Primenenie metodov nelineinogo programmirovaniya dlya resheniya variatsionnykh zadach gazovoi dinamiki”, Prikl. matem. i mekhan., 41:1 (1977), 59–64 | MR | Zbl

[4] Afonin G. I., Butov V. G., “O vliyanii zakrutki potoka idealnogo gaza na formu optimalnoi sverkhzvukovoi chasti kontura osesimmetrichnogo sopla s izlomom”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1989, no. 3, 155–160

[5] Afonin G. I., Butov V. G., “Optimalnye konfiguratsii sopl dlya dvukhfaznykh techenii”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1994, no. 2, 36–45 | Zbl

[6] Kraiko A. N., Variatsionnye zadachi gazovoi dinamiki, Nauka, M., 1979 | MR

[7] Fiakko A., Mak-Kormik Dzh., Nelineinoe programmirovanie: metody posledovatelnoi bezuslovnoi optimizatsii, Mir, M., 1972 | Zbl

[8] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[9] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR

[10] Miele A., Pritchard R., “Ploskie krylya minimalnogo soprotivleniya”, Teoriya optimalnykh aerodinamich. form, Mir, M., 1967, 95–110

[11] Pashkovskii S., Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, M., 1983 | MR

[12] Kurant R., Gilbert D., Metody matematicheskoi fiziki, v. 1, Gostekhteorizdat, 1951